Раздел V
ЭЛЕКТРИФИКАЦИЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА
Глава 27
ПОЛУЧЕНИЕ, ПЕРЕДАЧА И РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
27.1. ОСНОВНЫЕ ПОНЯТИЯ ЭЛЕКТРИЧЕСКОГО ТОКА
Электрический ток —это упорядоченное движение электрических зарядов под действием сил электрического поля. В металлических проводниках и вакууме ток образуется электронным потоком, а в жидкостях и газах — потоком ионов и электронов. Чтобы получить электрический ток, необходимо собрать электрическую цепь, состоящую из источника электрической энергии, электроприемника и замкнутого проводящего пути (цепи) для движения электрических зарядов.
Различают внешнюю и внутреннюю части электрической цепи. Электроприемники и соединительные провода образуют ее внешнюю часть, а источник электрической энергии представляет собой ее внутреннюю часть.
Электрическая энергия получается в результате преобразования других видов энергии: механической в машинных генераторах, тепловой в термоэлементах, лучистой в фотоэлементах, химической в гальванических элементах и аккумуляторах и т.д. Электроприемники или потребители электроэнергии преобразуют ее в другие виды энергии: в электродвигателях — в механическую, в электрических нагревательных приборах —в тепловую, в осветительных приборах —в излучение, в аккумуляторах — в химическую и т. п.
В промышленности, сельском хозяйстве и быту широко применяется постоянный и переменный (однофазный, трехфазный) ток.
Постоянным током называется электрический ток, который не изменяется во времени и по направлению. За направление тока принимают направление движения положительно заряженных частиц. Если ток образован движением отрицательно заряженных частиц, то его направление считают противоположным направлению движения частиц.
Наиболее распространенные источники постоянного тока — гальванические элементы, аккумуляторы, генераторы постоянного тока и выпрямительные установки.
Для количественной оценки тока в электрической цепи используют понятие «сила тока».
Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени. Если за время t через поперечное сечение проводника переместилось количество электричества Q, то сила тока
(27.1)
Единица измерения силы тока — ампер (А). Плотность тока — это отношение силы тока / к площади поперечного сечения /'проводника:
(27.2)
В замкнутой электрической цепи ток возникает под действием источника электрической энергии, который создает и поддерживает на своих зажимах разность потенциалов (напряжение), измеряемую в вольтах (В).
Сопротивление, которое влияет на силу тока в проводнике при заданном напряжении, — важный параметр электрической цепи. Сопротивление проводника характеризует его способность противодействовать протеканию электрического тока. Единица измерения сопротивления — ом (Ом).
Сопротивление зависит от материала проводника и его геометрических размеров (длины / и площади поперечного сечения F):
(27.3)
где р — удельное сопротивление, Ом ■ м.
Сопротивление проводников изменяется Т1ри изменении их температуры. С повышением температуры сопротивление металлических проводников увеличивается, а угля, растворов и расплавов солей и кислот уменьшается. Свойство проводников изменять сопротивление при изменении температуры используется в проволочных датчиках температуры.
Между напряжением, током и сопротивлением существует математическая зависимость, выражаемая законом Ома. Согласно этому закону для участка однородной цепи сила тока прямо пропорциональна значению приложенного напряжения:
(27.4)
где U— напряжение на зажимах цепи, В.
На практике применяют параллельное, последовательное и смешанное соединение элементов электрических цепей. Общеесопротивление цепи при параллельном соединении, например трех резисторов, определяют по формуле
(27.5)
При последовательном соединении общее сопротивление
(27.6)
Мощность тока
( 27.7)
Единица мощности — 1 ватт (Вт) = 1 вольт х 1 ампер. Ватт — это мощность, при которой за 1 с равномерно выполняется работа в 1 Дж. Мощность также измеряется единицами, кратными ватту: киловатт — 1 кВт = 1000 Вт, мегаватт — 1 МВт = 1 000 000 Вт.
Практическая единица измерения электрической энергии — киловатт-час (кВт ■ ч) — представляет собой работу, совершаемую при постоянной мощности 1 кВт в течение 1 ч.
Выражение мощности электрического тока можно преобразовать, заменив на основании закона Ома напряжение U произведением IR. Тогда
(27.8)
Большое практическое значение имеет то, что одну и ту же мощность электрического тока можно получить при низком напряжении и большой силе тока или при высоком напряжении и малой силе тока. Это используется при передаче электрической энергии на расстояния.
При протекании электрического тока через проводник он нагревается. Количество теплоты, выделяющейся в проводнике, определяют по формуле
(27.9)
Эта зависимость называется законом Джоуля—Ленца.
На основании законов Ома и Джоуля—Ленца можно проанализировать явление, которое возникает на практике при непосредственном соединении между собой проводников, подводящих электрический ток к нагрузке. Это явление называется коротким замыканием, так как ток начинает протекать более коротким путем, минуя нагрузку. Это аварийный режим работы цепи, сопровождающийся уменьшением сопротивления и резким ростом тока.
На рисунке 27.1 показана схема включения лампы накаливания в электрическую сеть. Если сопротивление лампы R = 500 Ом, а напряжение сети U = 220 В, то в цепи лампы согласно уравнению (27.4) протекает ток силой /л = 220/500 = 0,44 А.
Рассмотрим случай, когда провода, идущие к лампе накаливания, оказываются соединенными через очень малое сопротивление (i?c = 0,01 Ом), например толстый металлический стержень. В этом случае ток цепи, подходя к точке А, будет разветвляться по двум направлениям: большая его часть пойдет по пути с малым сопротивлением — к металлическому стержню, а небольшая часть тока будет проходить по пути с большим сопротивлением — к лампе накаливания.
Определим ток, протекающийпо металлическому стержню:
При коротком замыкании напряжение сети будет меньше 220 В, так как большой ток в цепи вызовет большую потерю напряжения, и ток, протекающий по металлическому стержню, будет несколько меньше, но тем не менее во много раз превышать ток, потреблявшийся ранее лампой накаливания.
Как известно, ток, проходя по проводам, выделяет теплоту, и провода нагреваются. В рассматриваемом примере площадь поперечного сечения проводов рассчитана на небольшой ток — 0,44 А. При соединении проводов более коротким путем, минуя нагрузку, по цепи будет протекать очень большой ток — 22 000 А. Такой ток вызовет выделение большого количества теплоты, что приведет к обугливанию и возгоранию изоляции, расплавлению материала проводов, порче электроизмерительных приборов, оп-» давлению контактов выключателей, ножей рубильников и т.п. Источник электрической энергии, питающий такую цепь, также может быть поврежден. Перегрев проводов может вызвать пожар.
Каждую электрическую проводку рассчитывают на номинальный для нее ток. Для предотвращения в цепи короткого замыкания необходимо соблюдать следующие требования. Электропроводка должна соответствовать условиям работы и напряжению в сети, места соединений и ответвлений должны быть хорошо изолированы, провода необходимо прокладывать в местах, защищенных от механических и химических повреждений, а также от сырости. Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при коротком замыкании, ее защищают с помощью предохранителей или автоматических выключателей, имеющих электромагнитные расцепители.
Переменный однофазный ток —это ток, изменяющийся во времени по значению и направлению. На практике применяют периодически изменяющийся по синусоидальному закону переменный ток (рис. 27.2).
Синусоидальные величины характеризуются следующими основными параметрами: периодом, частотой, амплитудой, начальной фазой или сдвигом фаз.
Период Т— время (с), в течение которого переменная величина совершает полное колебание.
Частота f— число периодов в 1 с. Единица измерения частоты — герц (Гц). Один герц равен одному колебанию в секунду.
Период и частота связаны зависимостью
В нашей стране применяют переменный ток частотой 50 Гц. Это значит, что полярность зажимов источника переменного тока частотой 50 Гц меняется 100 раз в 1 с.
Изменяясь во времени, синусоидальные величины (напряжение, ток, электродвижущая сила — ЭДС) принимают различные значения. Значение величины в данный момент времени называют мгновенным.
Амплитуда — наибольшее значение синусоидальной величины.
Переменный трехфазный ток широко распространен благодаря его важным преимуществам по сравнению с постоянным током (легко повышается и понижается напряжение с помощью трансформатора) и переменным однофазным током (значительная экономия металла на провода, а также создание вращающегося магнитного поля, которое используется в трехфазных асинхронных электродвигателях).
- 8.2. Машины для внесения минеральных удобрений и извести
- 8.1. Техническая характеристика машин для внесения минеральных удобрений
- 8.3. Машины для внесения органических удобрений
- Глава 9 посевные и посадочные машины
- 9.1. Схемы посева и посадки, агротехнические требования и классификация машин
- 9.2. Рядовые зерновые сеялки
- Техническая характеристика зерновых сеялок
- 9.3. Сеялки для посева пропашных культур
- 9.4. Овощные сеялки
- Картофелепосадочные и рассадопосадочные машины
- Глава 10 машины для химической защиты растений
- 10.1. Методы и способы защиты растений, агротехнические требования
- 10.2. Машины для химической защиты растений
- Техническая характеристика опрыскивателей
- 10.3. Машины для приготовления и транспортировки рабочих жидкостей
- Г л а в а 11 машины для заготовки кормов
- 11.1. Технологические процессы заготовки кормов и агротехнические требования
- 11.2. Косилки
- 11.3. Косилки-плющилки
- 11.4. Косилки-измельчители
- 11.5. Грабли
- 11.6. Машины для уборки рассыпного сена
- 11.7. Машины для заготовки прессованного сена
- 11.8. Агрегаты для приготовления травяной муки
- Глава 12 машины для уборки и послеуборочной обработки зерна
- 12.1. Способы уборки зерновых культур и агротехнические требования
- 12.2. Валковые жатки
- 12.3. Зерноуборочные комбайны
- 12.2. Техническая характеристика комбайнов.
- 12.4. Уборка незерновой части урожая
- 12.5. Зерноочистительные машины
- 12.6. Машины для сушки зерна
- 12.7. Машины для уборки кукурузы на зерно
- Глава 13 машины для уборки картофеля
- 13.1. Способы уборки и агротехнические требования
- 13.2. Картофелекопатели
- 13.3. Картофелеуборочные комбайны
- 13.4. Машины для послеуборочной доработки картофеля
- Г л а в а 14 машины для уборки сахарной свеклы
- 14.1. Технологии уборки сахарной свеклы и агротехнические требования
- 14.2. Машины для уборки ботвы
- 14.3. Корнеуборочные машины
- Глава 15 машины для уборки овощей
- 15.1. Комплекс машин для уборки и послеуборочной обработки лука
- 15.2. Машины для уборки столовых корнеплодов
- 15.3. Капустоуборочные машины
- 15.4. Самоходный томатоуборочный комбайн
- Глава 16 машины для орошения
- 16.1. Способы орошения и агротехнические требования
- 16.2. Основные элементы дождевальных систем
- 16.3. Дождевальные установки и машины
- 16.4. Машины для поверхностного полива
- Контрольные вопросы и задания к разделу II
- Раздел III
- 17.2. Тяговый баланс трактора и сопротивление рабочей машины
- 17.3. Комплектование машинно-тракторных агрегатов
- 17.4. Кинематика движения машинно-тракторного агрегата
- 17.5. Производительность машинно-тракторного агрегата
- 17.6. Эксплуатационные затраты при работе агрегата. Расход топлива и смазочных материалов
- 17.7. Транспорт в сельскохозяйственном производстве
- 17.8. Основы технологии механизированных работ
- Глава 18 основы технического обслуживания и ремонта машинно-тракторного парка
- 18.1. Система технического обслуживания и ремонта
- 18.2. Организация технического обслуживания
- 18.3. Эксплуатация нефтехозяйства
- Глава 19 основы оптимального планирования, проектирования и управления машинно-тракторным парком
- 19.1. Определение состава и структуры машинно-тракторного парка, планирование" его работы
- 19.2. Выбор средств технического обслуживания машинно-тракторного парка и планирование их работы
- 19.3. Организация инженерно-технической службы
- 19.4. Анализ эффективности использования машинно-тракторного парка
- 19.5. Методологические подходы к оценке технического уровня сельскохозяйственной техники
- 19.6. Общие методические принципы оценки эффективности сельскохозяйственных техники и технологий
- Р аз дел IV
- 20.2. Производственные процессы на фермах
- 20.3. Комплексная механизация в животноводстве
- Глава 21 механизация водоснабжения животноводческих ферм
- 21.1. Общая схема водоснабжения животноводческих ферм
- 21.2. Водоподъемные машины и установки
- 21.3. Водопроводная сеть и напорно-регулирующие устройства
- 21.4. Машины и оборудование для поения животных
- Глава 22 механизация подготовки кормов к скармливанию
- 22.1. Виды кормов. Способы и схемы приготовления кормов
- 22.2. Машины для измельчения кормов резанием
- 22.3. Машины для дробления и резания кормов
- 22.4. Машины для запаривания, смешивания и дозирования кормов
- 22.5. Технологические линии приготовления кормов. Кормоприготовительные цехи
- Глава 23 механизация раздачи кормов
- 23.1. Кормораздаточные устройства
- 23.2. Мобильные кормораздатчики
- 23.3. Кормораздатчики непрерывного транспортирования кормов (стационарные)
- Глава 24 механизация доения коров
- 24.1. Общие принципы и способы машинного доения
- 24.2. Доильные аппараты
- 24.3. Виды доильных установок
- 24.4. Элементы вакуумной системы доильных установок
- 24.5. Аппараты и механизмы для первичной обработки молока
- Глава 25 механизация удаления навоза
- 25.1. Способы удаления навоза
- 25.2. Стационарные механизмы и устройства для удаления навоза из помещений
- 25.3. Гидравлические системы удаления навоза
- 25.4. Пневматические системы удаления навоза
- Глава 26 механизация стрижки овец
- 26.1. Комплекты технологического оборудования для стрижки овец
- 26.2. Устройство стригальной машинки
- Контрольные вопросы и задания к разделу IV
- Раздел V
- 27.2. Источники переменного трехфазного тока
- 27.3. Электростанции, линии электропередач, трансформаторы
- 27.4. Энергетические системы
- 27.5. Внешние и внутренние электропроводки
- Глава 28 электропривод сельскохозяйственных машин, агрегатов и поточных линий
- 28.1. Типы электропривода и его основные части
- 28.2. Трехфазный асинхронный электродвигатель
- 28.3. Электрические двигатели сельскохозяйственного назначения
- 28.4. Аппаратура управления и защиты электроустановок
- 28.5. Режимы работы и выбор типа электродвигателя
- Глава 29 использование энергии оптического излучения в сельском хозяйстве
- 29.1. Основные понятия оптического излучения и его свойства
- 29.2. Источники электрического света
- 29.3. Системы электрического освещения. Осветительные приборы
- 29.4. Производственное использование электрического света
- 29.5. Использование ультрафиолетовых и инфракрасных излучений
- Глава 30 применение электрической энергии для нагрева
- 30.1. Электрические источники тепла
- 30.2. Электрический нагрев воды
- 30.3. Электрокалориферные установки
- 30.4. Электрообогреваемые полы и коврики
- 30.5. Электроподогрев защищенного грунта
- Глава 31 электротехнологии в сельском хозяйстве
- 31.1. Электротехнологии в растениеводстве
- 31.2. Электротехнологии в животноводстве
- Г л а в а 32 элементы системы автоматического управления
- 32.1. Основные понятия автоматизации
- 32.2. Элементы автоматики и их функции
- 32.3. Принципиальные, функциональные и структурные схемы автоматических систем
- 32.4. Оценка использования электроэнергии потребителями
- 32.5. Применение средств автоматизации
- Контрольные вопросы и задания к разделу V
- Раздел I. Тракторы и автомобили сельскохозяйственного назначения 5
- Раздел IV. Механизация производственных процессов