Тема 4 . Влияние абиотических и биотических факторов среды при индустриальных методах культивирования рыб
Физико-химические свойства воды определяют эффективность выращивания рыбы, так как они являются первичноводными животными и протекание всех жизненных функций зависит от состояния водной среды.
Поэтому вода по своему составу в бассейнах и садках должна отвечать нормам, которые обеспечивают сохранность вида, плодовитость и качество потомства, способствует проявлению потенциальных возможностей роста и не создает условий развития различных заболеваний. Весь комплекс факторов внешней среды можно разделить на 2 группы: абиотические и биотические.
Абиотические факторы среды, влияющие на эффективность выращивания рыбы в индустриальных условиях.
1. Температурный режим
2. Кислородный режим
3. Водообмен
4. Загрязнение
5. Связь с воздушной средой.
6. Освещенность
7. Прозрачность
Температура воды один из универсальных и определяющих экологических факторов среды. Амплитуда, при которой живут рыбы различна для разных видов.
Так как рыбы пойкилотермные организмы, их активность зависит от температуры воды. По отношению к температуре воды рыбы могут быть эвритермные и стенотермные ( форель ).
Для форели оптимальная температура, как и для других рыб, зависит от возраста - икра 6 – 12,5, личинки, мальки 10 – 14 , сеголетки, годовики 14 – 16 , товарная рыба 14 – 180 С. Пороговая - около - 0,1, летальная - 26 0С. Для карпа - оптимум 23 – 27, критическая – 0,50С. Для форели благоприятные температуры от 12 до 160С, допустимые с 8 до 180, ниже 8 – худшее питание, худшее усвоение кормов. При 18-200 и более – трудность поддержания газового режима, кислорода и активизация болезней. Солнце, широта местности, оптимальная температура 22-24 , карп, молодь – 25-270 C. От температуры воды зависят сроки созревания, сроки нереста, сроки жизни карпа – Куба-8 лет, в России- 20 лет. Для зимующего карпа критическая температура 0,50С.
Растворенный в воде кислород. Его содержание тесно увязано с температурой воды. Он в 28 раз труднее растворяется, чем СО2 и в 2 раза, чем азот. Оптимальные значения – 7 – 11 мг/л. В солоноватой и морской воде его растворяется меньше, чем в пресной. Чем моложе рыба, тем больше ей требуется растворенного кислорода. Для форели массой до 50 г необходимо 500 – 600 мг О.2 кг/ ч., а 100 – 200 г – 400-500 мг О 2 кг /ч.
Содержание растворенного кислорода может колебаться в широких пределах в зависимости от вида рыбы и различия потребности в нем. Карп –вток – 7 (80% насыщения), выток – 4 (40% насыщения), а форель – вток 9-11, а выток 5 мг О 2/л. БПК5 – не должен быть в воде для форели более 1-2 мг/л.
Форель реофильная и оксигенофильная рыба, живет при высоком парциальном давлении – избыток и недостаток кислорода может вызывать болезни.. Кислород оптимальный 9-11 мг л или 90-100% насыщения. Ночью, в предутренние часы - минимальный кислород.
В солоноватой и морской воде содержание растворенного кислорода ниже, чем в пресной. Известно, что чем моложе форель, тем выше ее потребность в растворенном кислороде. Практически 1 л/с позволяет уверенно выращивать 60 кг /год товарной форели.
Способы улучшения содержания кислорода.
Водная растительность днем выделяет молекулярный кислород в процессе фотосинтеза. От содержания О2 зависит скорость эмбрионального развития. Содержание кислорода для форели может достигать 300 – 350 % и тем не менее не следует допускать его превышения более 200-250 %, а также не следует допускать резкого повышения температуры воды.
Пересыщение воды воздухом, точнее азотом, является одним из факторов, способствующих возникновению газопузырькового заболевания у рыб. Для молоди лососевых летальными являются следующие величины насыщения воды азотом: 103-104 % нормального насыщения воды для личинок с желточным мешком и мальков; 105-113 % - для сеголетков, 118 % - для взрослых рыб. Такая ситуация часто создается при выращивании рыбы на отработанных водах ГРЭС, ТЭС и АЭС, а также при механическом водоснабжении, когда появляется возможность подсоса воздуха в закрытом трубопроводе.
Озон – О3. Бактериоцидные свойства озона были установлены еще в конце XIX века. Озон широко применяется при обеззараживании питьевой воды. Он представляет собой аллотропическое видоизменение кислорода. При обычных условиях это голубовато-фиолетовый газ, в жидком состоянии – темно-синий, в твердом –черного цвета. При определенных условиях взрывоопасен. Растворимость его в воде выше, чем у кислорода Молекула его крайне неустойчива и легко разлагается с выделением энергии. Обладает высоким окислительным потенциалом и легкостью диффузии через клеточные оболочки микробов. Окисляет органическое вещество микробной клетки, приводя ее к гибели. Спорообразующие бактерии более устойчивы к воздействию озона. Озон губительно действует на гидробионты. Водоросли гибнут при концентрации 0,5-1,0 мг /л, моллюски при 3,0 мг/л. Для полной гибели циклопов, олигохет, дафний и коловраток достаточно 2 мг/л. Для обеззараживания воды достаточно 0,5 –4 мг/л О3. Чем более мутная вода, тем больше нужно расходовать озона. Озон улучшает вкус воды, снижает ее цветность и уничтожает ее запах. Подача озона после биологического фильтра обеспечивает окисление аммония и нитритов.
Озон при концентрации 15 мг/л за 15 с полностью уничтожает бактерии и вирусы и окисляет значительное количество органических веществ, снижает концентрацию железа с .5 до 0,0 мг/л.7
Углекислота, двуокись углерода, свободный диоксид (СО2). Биопродуктивность водоема зависит от наличия двуокиси углерода. В большей концентрации углекислый газ ядовит для рыб. Содержание уже 30 мг СО2 / л вызывает аритмию и угнетенное дыхание; 50-80 мг/ л – нарушение равновесия, 107 мг/л – плавание на боку. Гемоглобин связывает большое количество СО2, что приводит к резкому уменьшению концентрации О2. Рыбы начинают задыхаться даже в насыщенной кислородом воде.
В природных водах углекислота содержится : 1) в свободном состоянии в виде газа, растворенного в воде – двуокись углерода; 2) в виде ионов НСО3 – гидрокарбонат ионов; 3) в виде ионов СО3 карбонат – ионов.
При избытке СО2 рыба гибнет с прижатыми жаберными крышками, а при недостатке О2 – с оттопыренными. Концентрация СО2 может резко повыситься во время паводка, весной, летом и осенью во время дождей.
Содержание углекислоты оказывает существенное влияние на жизнедеятельность рыб (табл.7)
Таблица 7
Влияние углекислоты на жизнедеятельность рыб
Виды рыб | Концентрация СО2 , мг/л | ||
учащенное дыхание | нарушенное равновесие | боковое или спинное плавание | |
Радужная форель | 36 | 50 | 100-147 |
Карп | 50-73 | 202 | 257 |
Линь | 110-123 | 385 | 440 |
Соленость и содержание минеральных солей. Под соленостью понимают общее количество минеральных веществ, растворенных в 1 кг морской воды и выражают в граммах на килограмм или в тысячных долях. Обозначают S и выражают в промилле (%о). Соленость затруднительно определить химическим путем, а поэтому ее определяют через весовую концентрацию хлора в воде S%о = 1,80655(Cl).
Форель способна покрыть потребности в минеральных веществах из окружающей воды. Для нее лучше, если жесткая вода, чем мягкая. С возрастом концентрация солей может быть большей. Молодь хорошо растет при 3-6 %0, неплохо переносит 9 %0, 12-15 %0 для двухлетней форели это уже нормальная соленость. При массе 100 г и более форель хорошо переносит соленость 30-35 % 0.
В жизни рыб большую роль играют Са, Р, К, Fe, Si, Na, Mg, Mn, Cu, Co и др. Из солей важное значение соли угольной кислоты (бикарбонаты и карбонаты), соляной (хлориды), фосфорной (фосфаты), серной (сульфаты), азотной (нитраты) и др.
Активная реакция среды - рН (водородный показатель рН) - является показателем концентрации ионов водорода в воде и определяет: кислая, нейтральная или щелочная среда. Название происходит от английского power и химического знака ионов водорода Н. Определяется калориметрическим методом, в зависимости от окраски используют индикатор. Мерка – к 10 мл воды добавляют 4 капли индикатора.
В зависимости от цвета – определяют рН- красный цвет – кислая среда, голубовато-фиолетовый – щелочная, зеленый цвет – нейтральная среда. Шкала от 4 до 10. Для карпа рН 4,5-10,8 (выше или ниже – смерть ) Критическая для форели 9,2. Весной при резком возрастании щелочности до 9 наблюдается гибель рыб. Летом жизнедеятельность растений (элодея, рдест гребенчатый, синезеленые и нитчатые водоросли) повышают рН. Негашеная известь, соли меди и гербициды нейтрализуют (кислую среду ). рН существенно зависит от содержания Са в воде. Нейтральное содержание рН–7. Благоприятные условия содержания рН – 6,5 – 8. Критические значения ниже 6 и выше 8. Жесткая вода стабилизирует рН. Величина рН определяет токсичнсть многих биологически-активных веществ.
Кислые воды болот, гуминовые вещества препятствуют эффективному выращиванию рыбы. Приток талой воды резко меняет активность среды и вызывает массовые отходы рыбы. Для карпа предел выживания – 4,3–10,8, для ручьевой форели – 4,5-9, для радужной – 9,2. При высоком значении рН повышается ядовитое воздействие аммиака.
Течение – носитель кислорода, удаляет продукты метаболизма (обмена), остатки корма, экскременты. Равномерно распределяет корм. В лотках скорость течения 2-3 см/с. Крупная форель может преодолевать течение до 20 м/с. Известно, что большая скорость вызывает повышенный водообмен и ухудшает рыбоводно-экономические показатели. Поэтому необходимо создавать умеренное течение. Обычно течение не должно быть выше 0,5 м/с.
Водообмен. От степении водообмена зависит рыбопродуктивность и рыбопродукция водоема и рыбоводной емкости. При большем водообмене до определенного значения всегда наблюдается большая рыбопродукция.
Пресные воды – содержат 1 г/л, солоноватые – 1 –15 г/л , соленые – 15-40 г/л минеральных солей.
Источником поступления микроэлементов в рыбу является вода, растительность, естественный и искусственный корм.
Жесткость – зависит от наличия солей Ca и Mg. За единицу жесткости принят градус жесткости: 1 немецкий градус – 10 Н= 10 мг Са в 1 л воды. 1 фрацузский градус – 10Ф = 10 мг СаСО3,. 1 английский градус – 10А = 10 мг СаСО3 в 700 г воды или 14,3 мг/л СаСО3. Жесткость бывает кальциевой и магниевой, а суммарная – общей жесткостью. Карбонатная жесткость СаСО3 – известь, характеризует концентрацию кальция и магния, а бикарбонатная – (СаСО3)2 – хорошо растворяется в воде до 900 мг/л или до 500. Жесткость, остающаяся в воде после кипячения, называется постоянной и выражается в мг-экв./л – 1 мг экв./л Са = 20,04 мг, 1 мг-экв./л Мg =12,16 мг. Карбонатная жесткость составляет 70-80% от общей жесткости. По степени жесткости воду делят на 6 классов (табл.8).
Таблица 8
- Тема 1. Индустриальное рыбоводство. Его место в системе рыбного хозяйства России. Особенности и краткая история развития…………………………………………………………………………….3
- 1.1 Краткая история развития и становления индустриального рыбоводства
- 1. Высокая плотность посадки благодаря интенсивному водообмену.
- 1. Индустриальные хозяйства, использующие воду с естественной температурой (холодноводные).
- 2. Индустриальные хозяйства, использующие воду с повышенной против естественного уровня температурой (тепловодные):
- 1) Выращивание холодолюбивых рыб (радужная форель и ее аналоги, сиги и др.) в садках, установленных в водоемах с естественной температурой воды (озера, водохранилища, каналы и др.).
- 1. Воспроизводству различных рыб.
- 1. Материал садков быстро изнашивается вследствие гниения:
- Тема 3 . Выращивание рыбы в садках в морских условиях
- Контрольные вопросы
- Литература
- Тема 4 . Влияние абиотических и биотических факторов среды при индустриальных методах культивирования рыб
- Характеристика воды в зависимости от жесткости
- Контрольные вопросы
- Тема 5. Применение анестезирующих веществ в индустриальном
- Контрольные вопросы
- Литература
- Тема 6. Рыбоводно-биологические и экологические свойства холодноводных объектов рыбоводства при индустриальных методах
- 6.1. Радужная форель (Oncorhynchus mykiss Walbaum, 1792)
- 6.4. Стальноголовый лосось(Oncorhynchus mykiss Walbaum,1792)
- Получена скрещиванием форели Дональдсона и стальноголового лосося
- 6.12. Микижа -(Oncorhynchus mykiss Walb.)
- Тема 7. Разведение и выращивание радужной форели в холодноводном индустриальном хозяйстве
- Годовая продукция товарной форели в зависимости от водообмена
- Показатели воды, поступающей в инкубационный форелевый цех
- Характеристика воды в зависимости от жесткости
- 3. Селекционно-племенная работа в форелеводстве
- 3.1. Общие задачи селекции
- 3.2 Способы проведения селекционного отбора
- 3.3. Проведение селекционно-племенной работы
- 4. Санитарно-профилактические и лечебные мероприятия
- Литература
- Тема 8. Разведение и выращивание сиговых традиционными и индустриальными методами
- 8.1. Формирование и содержание ремонтно-маточного стада
- 8.2. Сбор и инкубация икры
- 8.3. Выращивание рыбопосадочного материала
- 8.4. Выращивание товарной рыбы
- Выращивание и содержание производителей в садках. Кормление гранулированнным кормом пс-95
- Тема 9. Разведение и выращивание рыб в тепловодных индустриальных хозяйствах
- Тема 10. Разведение и выращивание карпа индустриальными методами на теплых водах грэс, тэс и аэс
- Характеристика гранул для карпа различной массы тела
- Нормативы выращивания молоди карпа в бассейнах
- Выращивание в бассейнах товарных двухлетков
- Тема 11. Разведение и выращивание осетровых рыб индустриальными методами
- Тема 12. Разведение и выращивание канального сома в индустриальных условиях
- Формирование маточного стада
- Тема 13. Разведение и выращивание тиляпий в индустриальных хозяйствах
- Рыбоводно-биологические нормативы выращивания тиляпии в узв
- Технологические показатели работы узв при выращивании тиляпии
- Тема 14. Выращивание угря в индустриальных условиях
- Перевозка угря. Многие страны испытывают недостаток в стекловидном угре и импортируют его из районов с большими запасами (Франция и др.).
- Технология выращивания угря Требования к условиям вырашивания угря.
- Производство товарного угря. У угря массой более 50 г минимальный суточный прирост составляет 0,4-0,5 %, так что через следующие 300-360 дней средняя масса достигает 200-250 г.
- Тема 15. Корма и кормление рыбы в индустриальных условиях
- Потребность рыб в основных питательных веществах
- Витамины делят на 2 группы.
- 1. Корма растительного происхождения.
- 2. Корма животного происхождения
- 3. Корма микробного происхождения
- 1. Брикетированные
- Способы сортировки рыб в индустриальных хозяйствах и конструкция сортировальных устройств
- Тема 17. Выращивание молоди радужной форели при оборотной системе водоснабжения
- Тема 18. Технология разведенгия и выращивания рыб в установках с замкнутым циклом водообеспечения
- 18. 1. Выращивание рыбы в рыбоводной компактной установке "виз-рку(к)-240"
- 18.2.Выращивание рыбы в установке с замкнутым циклом водообеспечения "Штелерматик"
- 18.3 Выращивание рыбы в установке "Биорек"
- Тема 19 .Механизация и автоматизация производственных процессов в индустриальном рыбоводстве
- 1. Малая механизация - применение инструментов, применение маханизмов с приводами ( например лебедка)
- 2. Частичная механизация - использование отдельных машин в рабочем процессе ( например подъем рыбы из уловителя).
- 3. Полная механизация - система машин - подъемников, сортировки, средств транспортировки, автоматических весов.
- 4. Комплексная механизация - механизация всего рабочего процесса с включением вспомогательных процессов (еще разрабатывается, предмет мечтаний рыбовода) – это длительный процесс.
- 1. Частичной - кормушка с реле временем, которое по заданной программе периодически включает механизмы.
- 2. Полной - применение автоматизированных систем механизмов.
- 3. Комплексная (системная с помощью эвм) - объединение производственных процессов с помощью автоматических систем, включая подготовку и управление производством.
- 1. Оптимальной производительности.
- Тема 20. Транспортировка спермы, икры, личинок, молоди, товарной рыбы и производителей
- Тема 22. Проектирование рыбоводных предприятий