logo
Почвоведение_ФИЗ_ХИМ_ПОЧВ

Потенциалопределяющие системы в почвах.

Почвы содержат большой набор окислительно-восстановительных систем: Fe3+ Fe2+, Mn2+ Mn3+ Mn4+, Cu+ Cu2+, Co2+ Co3+, NO3NO23‾, S6S2‾.

Различают обратимые и необратимые окислительно-восстановительные системы. Обратимыми являются такие системы, которые в процессе изменения окислительно-восстановительного режима не меняют суммарный запас компонентов. Необратимые системы в процессе изменения окислительно-восстановительного режима утрачивают часть веществ. Эти вещества переходят в газообразное состояние или выпадают в осадок. Как правило, в почвах преобладают необратимые системы.

К обратимым окислительно-восстановительные системам относятся:

Система Fe3+Fe2+. Эта система занимает особое место среди обратимых систем. Она чутко реагирует на малейшие изменения окислительно-восстановительной обстановки. Растворимость и подвижность соединений двухвалентного железа тем больше, чем ниже рН и ОВП. Растворимость соединений трехвалентного железа крайне низкая. Ионы окисного железа могут появляться в почвенных растворах только при рН меньше 3. Однако на растворимость соединений железа влияют не столько кислотно-щелочные, сколько окислительно-восстановительные условия. При Eh 860 мв 99% ионов железа находится в окисной форме, при Eh 640 мв - 99% представлено закисными формами. Увеличение Eh почвы на 5-6 мв уменьшает концентрацию ионов железа примерно в 2 раза.

Миграция соединений железа возможна главным образом в форме соединений двухвалентного железа в условиях повышенной кислотности и пониженного Eh.

Система Mn2+↔Mn4+. Данная система является крайне чуткой к изменению ОВП. Соединения четырехвалентного марганца нерастворимы в условиях, характерных для почвенных горизонтов. Обменный марганец представлен двухвалентным катионом. Концентрация ионов двухвалентного марганца при повышении кислотности и понижении Eh возрастает в десятки тысяч раз. Возрастание Eh до 500-600 мв вызывает быстрый переход двухвалентного марганца в четырехвалентный и его уменьшение в растворе практически до следов. Изменение Eh на 5-6 мв приводит к увеличению растворимости марганца в 2 раза.

Миграция соединений марганца в ходе почвообразовательных процессов в вертикальном и горизонтальном направлениях сходна с миграцией соединений железа.

Миграция и аккумуляция соединений железа и марганца происходит при почвообразовании одновременно. Однако их соотношение в растворах и осадках в зависимости от рН и ОВП сильно меняется. В нейтральной и слабокислой среде при низком значении Eh в растворах преобладает марганец, в осадках – железо. В кислой среде при высоком Eh железо удерживается в растворе, марганец выпадает в осадок.

К необратимым окислительно-восстановительным системам относятся:

Система NO3 → NO2 → NО → N. Процессы нитрификации и денитрификации, протекающие под воздействием микроорганизмов, регулируются условиями Eh и концентрацией водородного иона. Процесс нитрификации и накопления нитратов происходит в условиях окислительного режима и при высоких Eh 400-500 мв. Увлажнение почвы снижает Eh и способствует развитию процессов денитрификации. Снижение Eh до 340 мв вызывает переход нитратов в нитриты, дальнейшее снижение приводит к образованию газообразных окислов азота и их исчезновение из почвы.

Система сульфаты ↔ сульфиды. Данная окислительно-восстановительная система играет большую роль во всех почвах, где присутствуют сернокислые соли. При участии микроорганизмов система сульфаты – сульфиды в присутствии органического вещества и недостатке кислорода сдвигается в сторону сульфидов. Происходит процесс восстановления сульфатов до сернистых металлов:

Под действием присутствующей в почве углекислоты сернистые металлы легко разлагаются и образуют бикарбонаты и карбонаты щелочных и щелочно-земельных металлов. При этом происходит процесс восстановления сульфатов:

Образующийся сероводород уходит в атмосферу. При этом развивается процесс десульфирования или десульфации почвенного раствора. Сернокислые соли постепенно исчезают, хлористые соли остаются в неизменном состоянии. В результате процессов десульфирования хлоридно-сульфатные растворы превращаются в хлоридные или карбонатно-хлоридные.

Однако в почвенном растворе содержание элементов с переменной валентностью достаточно мало. Поэтому почвенный раствор обладает невысокими ОВ-емкостью и буферностью, а величина Eh неустойчива.

Более существенное влияние на ОВ-процессы в почвах оказывает растворенный в почвенном растворе кислород, почвенная микрофлора и вода.

Почти все почвенные реакции происходят в водной среде, а сама вода может выступать и в качестве окислителя, и в качестве восстановителя. Именно это свойство воды определяет пограничные уровни проявления окислительно-восстановительных реакций. Предел окислительных условий – это окисление воды до молекулярного кислорода. Оно описывается уравнением:

Нижняя граница устойчивости воды обусловлена реакцией восстановления до водородного иона:

При рН 7 устойчивость воды определяется интервалом величин ОВП от +0,8 до – 0,3 В. Он характерен для природных почв. Значения выше + 0,8 и ниже - 0,3 могут быть созданы только искусственно при внесении больших доз окислителей или восстановителей. Вода в почвах служит ОВ-буфером с очень большой емкостью, ограничивающим диапазон встречающихся в почвах окислительно-восстановительных потенциалов.