logo search
Polnyy_otchet

2.3.2 Альтернативные источники энергии

Альтернативная энергетика – совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии.

Альтернативный источник энергии – устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле.

Виды альтернативной энергетики:

-солнечная энергетика;

-ветроэнергетика;

-биомассовая энергетика;

-волновая энергетика;

-градиент-температурная энергетика;

-эффект запоминания формы;

-приливная энергетика;

-геотермальная энергия.

Солнечная энергетика – преобразование солнечной энергии в электроэнергию фотоэлектрическим и термодинамическим методами. Для фотоэлектрического метода используются фотоэлектрические преобразователи (ФЭП) с непосредственным преобразованием энергии световых квантов (фотонов) в электроэнергию. Термодинамические установки, преобразующие энергию солнца вначале в тепло, а затем в механическую и далее в электрическую энергию, содержат "солнечный котел", турбину и генератор. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей: низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому изменения тепловых режимов могут вносить серьезные ограничения в работу системы. Подобная система должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций необходимо правильно оценивать метеорологические факторы.

Геотермальная энергетика – способ получения электроэнергии путем преобразования внутреннего тепла Земли (энергии горячих пароводяных источников) в электрическую энергию. Этот способ получения электроэнергии основан на факте, что температура пород с глубиной растет, и на уровне 2–3 км от поверхности Земли превышает 100°С. Существует несколько схем получения электроэнергии на геотермальной электростанции. Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы. Стоимость "топлива" такой электростанции определяется затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом невелика, так как она не имеет топки, котельной установки и дымовой трубы. К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы могут содержать отравляющие вещества. Кроме того, для постройки геотермальной электростанции необходимы определенные геологические условия.

Ветроэнергетика – это отрасль энергетики, специализирующаяся на использовании энергии ветра (кинетической энергии воздушных масс в атмосфере).

Ветряная электростанция – установка, преобразующая кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания. Для получения энергии ветра применяют разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров; вертикальные роторы и др. Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади, много больше, чем для других типов электрогенераторов.

Волновая энергетика – способ получения электрической энергии путем преобразования потенциальной энергии волн в кинетическую энергию пульсаций и оформлении пульсаций в однонаправленное усилие, вращающее вал электрогенератора. По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. В механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха – до 85 процентов.

Приливная энергетика, как и прочие виды альтернативной энергетики, является возобновляемым источником энергии. Для выработки электроэнергии электростанции такого типа используют энергию прилива. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины. Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.

Градиент - температурная энергетика. Этот способ добычи энергии основан на разности температур. Он не слишком широко распространен. С его помощью можно вырабатывать достаточно большое количество энергии при умеренной себестоимости производства электроэнергии. Большинство градиент - температурных электростанций расположено на морском побережье и используют для работы  морскую воду. Мировой океан поглощает почти 70% солнечной энергии, падающей на Землю. Перепад температур между холодными водами на глубине в несколько сотен метров и теплыми водами на поверхности океана представляет собой огромный источник энергии, оцениваемый в 20-40 тысяч ТВт, из которых практически может быть использовано лишь 4 ТВт. Вместе с тем, морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Биомассовая энергетика. При гниении биомассы (навоз, умершие организмы, растения) выделяется биогаз с высоким содержанием метана, который и используется для обогрева, выработки электроэнергии. Существуют предприятия (свинарники и коровники и др.), которые сами обеспечивают себя электроэнергией и теплом за счет того, что имеют несколько больших "чанов", куда сбрасывают большие массы навоза от животных. В этих герметичных баках навоз гниет, а выделившийся газ идет на нужды фермы. Еще одним преимуществом этого вида энергетики является то, что в результате использования влажного навоза для получения энергии, от навоза остается сухой остаток являющийся прекрасным удобрением для полей. Также в качестве биотоплива могут быть использованы быстрорастущие водоросли и некоторые виды органических отходов (стебли кукурузы, тростника и пр.).

Эффект запоминания формы – физическое явление, впервые обнаруженное советскими учеными Курдюмовым и Хондросом в 1949 году. Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. При восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Таким образом, при восстановлении первоначальной формы сплавы вырабатывают значительно количество тепла (энергии). Основным недостатком эффекта восстановления формы является низкий КПД – всего 5-6 процентов.

Альтернативное будущее энергетики Республики Беларусь

В Беларуси была принята целевая государственная программа, согласно которой доля местных видов топлива и альтернативных источников энергии к 2012 г. в энергобалансе должна быть доведена до 25%. Как заявил президент Республики Беларусь Александр Лукашенко, энергосбережение, использование альтернативных видов энергоносителей, прежде всего своих, возобновляемых, выходит на уровень задач национального звучания. На первом этапе ставка была сделана преимущественно на использование угля, торфа и древесины. Основным направлением стимулирования строительства новых объектов, работающих на местных видах топлива (МВТ), стали закупки концерном “Белэнерго” электроэнергии, вырабатываемой такими предприятиями, по повышенным тарифам. Принято решение в первые 5 лет их эксплуатации покупать электроэнергию в 1,3 раза дороже обычных тарифов. В результате подобных стимулирующих мер планируется замещение природного газа местными видами топлива в системе Минэнерго Беларуси в 2010 г. порядка 460 тыс. т.у.т. По словам заместителя министра энергетики Беларуси Леонида Шенеца, для реализации программы модернизации энергетической отрасли, в том числе на строительство ТЭЦ, работающих на угле и местных видах топлива, необходимо около 19,1 млрд долл., на внедрение энергоэффективных технологий и реализацию программ по энергосбережению планируется привлечь 12,5 млрд долл. За 2009-2010 гг. планировалось истратить 165 млн долл. на перевод котельных на местные виды топлива и жилищно-коммунальное хозяйство Беларуси. Это значительно бóльшие суммы, в сравнении с предыдущими годами. Ранее за 2005-2007 гг. на эти цели было затрачено около 62 млн долл. За последние шесть лет доля местных видов топлива значительно выросла – с 5,3% до 21,7%, что позволило сократить долю импортируемых топливно-энергетических ресурсов ЖКХ с 94,7% до 78,3%. При этом неправительственными организациями в Белоруссии разрабатывается “концепция развития экологически чистой энергетики до 2050 года”. По мнению одного из разработчиков концепции, представителя международной организации Inforse Гунно Бойе Олесена, у Беларуси есть достаточный потенциал в использовании энергии солнца, ветра, биомассы и биогаза для того чтобы активно развивать свою альтернативную энергетику. Концепция предусматривает активное использование альтернативных источников энергии в различных сферах жизнедеятельности, в том числе в домостроительстве, внедрение энергоэффективных технологий в производстве, модернизацию энергетических сетей, энергосбережение. Реализация предложенного сценария позволит к 2050 г. полностью отказаться от импорта газа и нефти, а также от ядерной энергетики в республике. Необходимо также отметить то, что для более широкого применения альтернативных источников энергии в Беларуси нужно лоббировать их использование на разных уровнях. Так считает директор компании ООО “Белветроэнерго” Владимир Нистюк. Он говорит, что лоббирование станет одной из целей “Ассоциации возобновляемой энергетики”, к участию в которой приглашены и биоэнергетики, и гелиоэнергетики. Такая структура необходима, подчеркивает Нистюк, еще и потому, что альтернативная энергетика – это новая для Беларуси отрасль. Чтобы она эффективно заработала, необходимо принять соответствующее законодательство, добиться поддержки на государственном уровне и, главное, – понимания перспективности возобновляемых источников энергии.

Повышение энергоэффективности

К 2020 г. Беларусь собирается снизить энергоемкость ВВП с 400 до 210-220 кг нефтяного эквивалента на 1 тыс. долл. ВВП и выйти по этому показателю на уровень Швеции. К 2010 г. в Беларуси планируется уменьшить энергоемкость ВВП не менее чем на 31% и выйти на показатель 280 кг нефтяного эквивалента на 1 тыс. долл. ВВП (уровень Канады). В 2015 г. энергоемкость ВВП должна снизиться не менее чем на 50%, в 2020 г. – не менее чем на 60% к уровню 2005 г. Но пока в Беларуси энергоемкость ВВП в 1,5-2 раза выше, чем в развитых странах со сходными климатическими условиями. Содействовать этому призваны новые технологии и увеличение использования в республике местных видов топлива (МВТ), вторичных, нетрадиционных и возобновляемых энергоресурсов (НВИЭ) на 1,7 млн т.у.т.

Развитие биоэнергетики

Основными направлениями в производстве энергии из биомассы являются:

-отходы растениеводства;

-биогаз из отходов животноводства;

-дрова и древесные отходы;

-фитомасса.

Использование отходов растениеводства в качестве топлива является принципиально новым направлением энергосбережения для Беларуси. Общий потенциал отходов растениеводства оценивается до 1,46 млн т.у.т. в год. Отходы животноводства особенно интересны тем, что без дополнительных энергетических затрат можно получить экологически чистые высококачественные органические удобрения и вследствие этого пропорционально сократить энергоемкое производство минеральных удобрений. Применение биогазовых установок позволит существенно улучшить экологическую обстановку вблизи крупных ферм и животноводческих комплексов, а также на посевных площадях, куда в настоящее время сбрасываются отходы животноводства. Потенциально возможное получение товарного биогаза от животноводческих комплексов составляет 160 тыс. т.у.т. в год. Централизованная заготовка дров и отходов деревообработки в республике Беларусь осуществляется предприятиями Министерства лесного хозяйства и концерна “Беллесбумпром”. Наряду с использованием отходов деревообработки для получения тепла целесообразно предусмотреть экономически обоснованное вовлечение лигнина в топливный баланс республики. В целом по республике годовой объем использования дров и отходов лесопиления составлял около 1,0-1,1 млн т.у.т. Часть дров поступает населению за счет самозаготовок, объем которых оценивается на уровне 0,3-0,4 млн т.у.т. Предельные возможности республики по использованию дров в качестве топлива можно определить, исходя из естественного годового прироста древесины, который приближенно оценивается в 25 млн м³ или 6,6 млн т.у.т. в год, в т.ч. в загрязненных районах Гомельской области 20 тыс. м³ или 5,3 тыс. т.у.т. Для использования древесины из данных районов в качестве топлива необходимо разработать и внедрить технологии и оборудование по газификации и параллельной дезактивации. Исходя из планируемого к 2015 г. роста заготовок древесины в 2 раза, а также с учетом увеличения объемов использования отходов деревообработки, лесопиления и переработки древесины, прогнозируемый годовой объем древесного топлива может возрасти до 1,6 млн т.у.т. В климатических условиях республики с 1 га энергетических плантаций собирается масса растений в количестве до 10 т сухого вещества, что эквивалентно примерно 5 т.у.т. При дополнительных агроприемах продуктивность гектара может быть повышена в 2 раза. Из этого количества фитомассы можно получить 5-7 т жидких продуктов эквивалентных нефти. Наиболее целесообразно использовать для получения сырья площади выработанных торфяных месторождений, на которых отсутствуют условия для произрастания сельскохозяйственных культур. Площадь таких месторождений в республике составляет около 180 тыс. га, которая может стать стабильным, экологически чистым источником энергетического сырья в объеме до 1,3 млн т.у.т. в год. Отсутствие опыта массового использования фитомассы для энергетических целей не позволяет сделать оценку затрат и будущих цен на топливо, т. к. для этой цели потребуется разработка специальной техники, дорожная инфраструктура, перерабатывающие предприятия и т.д. Однако по укрупненным расчетам цена составит около 35 долл./т.у.т.

Энергия ветра

Для первоначального этапа развития ветроэнергетики Беларуси определены 1840 площадок для строительства как одиночных ВЭУ, так и ВЭС с потенциалом более 200 млрд кВт·ч. Выявленные на территории Беларуси площадки под ветроэнергетику – это, в основном, гряды холмов высотой от 20 до 80 м с фоновой скоростью ветра 5 м/с и более, на которых можно возвести от 5 до 20 ВЭУ. Выборочные обследования зон опытной эксплуатации ветротехнического оборудования на территории Беларуси показали, что при оптимальном выборе строительной площадки для возведения ВЭУ (на возвышениях и открытой местности, на берегах водных массивов и т.п.) окупаемость ВЭУ при среднегодовой скорости ветра 6-8 м/с укладывается в срок около 5 лет. Наиболее эффективно обеспечивается использование современной зарубежной ветротехники на территориях зон со среднегодовыми фоновыми скоростями не ниже 4,5 м/с на холмистом рельефе. К таким регионам относятся: возвышенные районы большей части севера и северо-запада Беларуси, центральная зона Минской области, включая прилегающие с запада районы, Витебская возвышенность. В итоге ветер может дать Беларуси 2-3% энергии от общего энергобаланса страны, максимум – до 5%.

Энергия солнца

По метеорологическим данным в Республике Беларусь в среднем 250 дней в году пасмурных, 85 с переменной облачностью и 30 ясных, а среднегодовое поступление солнечной энергии на земную поверхность с учетом ночей и облачности составляет 243 кал на 1 см² за сутки, что эквивалентно 2,8 кВт·ч/м², а с учетом КПД преобразования для гелиоэлектричества 12% – 0,3 кВт·ч/м². Нынешняя стоимость солнечной электроэнергии равняется 4,5 долл. за 1 Вт мощности и, как результат, цена 1кВт·ч электроэнергии в 6 раз дороже энергии, полученной традиционным путем сжигания топлива. Высокая стоимость солнечных коллекторов, а также сопутствующие затраты на строительно-монтажные работы, конструкции, кабели, системы управления, технические средств для обслуживания, инфраструктуру в настоящее время накладывают сильные ограничения на развитие гелиоэнергетики в Беларуси. Основными направлениями использования энергии солнца будут гелиоводоподогреватели (ГВН) и различные гелиоустановки для интенсификации процессов сушки и подогрева воды в сельскохозяйственном производстве. Стоимость оборудования для жилого дома или коттеджа варьируется в пределах 900-3500 долл. Отдельный интерес представляет пассивное использование солнечной энергии методом строительства домов “солнечной архитектуры“. Расчеты показывают, что количества энергии, падающее на южную сторону крыши домов площадью 100 м² на широте Минска, вполне хватает даже на отопление зимой. Размеры дешевого гравийного теплового аккумулятора под домом вполне приемлемы. Пока игнорируются даже принципы пассивного солнечного отопления. Единственное здание в Беларуси, построенное с использованием этого принципа – немецкий Международный Образовательный Центр. Если проектирование зданий проводить с учетом энергетического потенциала климата местности и условий для саморегулирования теплового режима зданий, то расход энергии на теплоснабжение можно сократить на 20-60%. Так, строительство на принципах “солнечной архитектуры” может снизить годовое теплопотребление до 70-80 кВт/м².