logo
Оценка токсичности сурьмы при использовании удобрений и мелиорантов в агроценозе

1.1 Химические свойства сурьмы

Сурьма принадлежит к пятой группе периодической системы Д.И.Менделеева и входит в подгруппу мышьяка. Атомная масса сурьмы равна 121,75, атомный номер 51. Строение электронной оболочки 1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4s2, 4p6, 4d10, 5s2, 5p3. Природная сурьма состоит из двух природных изотопов 121Sb (57,25%) и 123Sb (42,75 %).

Сурьма -- металл блестящего серовато-белого цвета. Из жидкого состояния застывает в кристаллическом виде. Кроме кристаллической формы, известны три аморфные формы -- желтая, черная и взрывчатая сурьма. В обычных условиях устойчива только кристаллическая сурьма, она серебристо-белого цвета с синеватым оттенком. Чистый металл при медленном охлаждении под слоем шлака образует на поверхности игольчатые кристаллы, напоминающую форму звезд.

Взрывчатая сурьма (плотность 5,64-5,97 г/см3) взрывается при любом соприкосновении: образуется при электролизе раствора SbCl3; чёрная (плотность 5,3 г/см3) - при быстром охлаждении паров сурьмы; жёлтая - при пропускании кислорода в сжиженный SbH3. Жёлтая и чёрная неустойчивы, при пониженных температурах переходят в обыкновенную. Наиболее устойчивая кристаллическая сурьма, кристаллизуется в тригональной системе, плотность 6,61-6,73 г/см3 (жидкой - 6,55 г/см3); tпл630,5 °C; tкип1635-1645 °C. Температурный коэффициент линейного расширения для поликристаллической сурьмы 11,5 Ч106 при 0-100 °C; удельное электросопротивление (20 °C) (43,045Ч106 омЧсм); диамагнитна, удельная магнитная восприимчивость -0,66Ч10-6. В отличие от большинства металлов, сурьма хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддаётся ковке (иногда её относят к полуметаллам). Механические свойства зависят от чистоты металла. Твёрдость по Бринеллю для литого металла 325-340Мн/м2 ; модуль упругости 285-300; предел прочности 86,0Мн/м2. В соединениях проявляет степени окисления главным образом +5, +3 и -3.

В химическом отношении сурьма малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной сурьме. Металл активно взаимодействует с хлором и другими галогенами, образуя сурьмы галогениды. С кислородом взаимодействует при температуре выше 630 °C с образованием Sb2O3. При сплавлении с серой получаются сурьмы сульфиды, так же взаимодействует с фосфором и мышьяком. Устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют сурьму с образованием хлорида SbCl3 и сульфата Sb2(SO4)3; концентрированная азотная кислота окисляет сурьму до высшего окисла, образующегося в виде гидратированного соединения xSb2O5ЧуН2О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты (МеSbO3Ч3H2O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO2ЧЗН2О), обладающие восстановительными свойствами. Сурьма соединяется с металлами, образуя антимониды.

1.2 Фоновое содержание сурьмы в разных типах почв. Кларк в

литосфере

Среднее содержание сурьмы в земной коре невелико (не превышает 1 мг/кг) или 5 Ч10-5 % по массе. Исключение составляют глины, в которых концентрация Sb достигает 2 мг/кг. В геохимическом отношении сурьма имеет черты сходства с мышьяком, в меньшей степени - с висмутом. В природных условиях обычно имеет валентность +3, реже +5. Для неё характерно амфотерное поведение.

Поведение сурьмы в процессе выветривания изучено недостаточно. Тем не менее, характер распределения в водах, концентрации в углях и связь с гидроксидами железа указывают на относительно высокую её подвижность в окружающей среде. В верхних слоях почв содержание сурьмы колеблется от 0,05 до 4,0 мг/кг, т.е. сравнимо с уровнями в горных породах. По данным Ведеполя, среднее содержание сурьмы в почвах составляет 1 мг/кг, а общее среднее, рассчитанное на основе данных таблицы 1, равно 0,9 мг/кг.

Как и мышьяк, сурьма может быть связана с месторождениями цветных металлов, а в промышленных районах она, вероятно, является загрязняющим окружающую среду веществом. Например, в почвах вблизи завода по выплавке меди отмечены высокие содержания этого элемента, достигающие 200 мг/кг. Имеются данные о повышенных ее концентрациях в воздухе около различных плавильных заводов и в городских районах. Характер изменения сурьмы в верхнем слое почв Норвегии ясно свидетельствует о техногенном загрязнении, связанном с влиянием дальнего атмосферного переноса.

Таблица 1. Содержание сурьмы в поверхностном слое почв различных

стран (мг/кг сухой массы)

Почвы

Страна

Пределы колебаний

Среднее

Подзолы и песчаные почвы

Канада

0,05-1,33

0,19

Великобритания

0,34-0,44

-

Суглинистые и глинистые почвы

Канада

0,05-2,00

0,76

Почвы на основных породах

Великобритания

0,29-0,62

-

Флювиосоли

Болгария

-

0,82

Черноземы

Болгария

-

0,99

Гистосоли

Канада

0,08-0,61

0,28

Лесные почвы

Болгария

1,25-2,32

1,77

Разные типы почв

Нигерия

1,00-2,00

-

Канада

0,29-4,00

1,67

Великобритания

0,56-1,30

0,81

Норвегия

0,17-2,20

0,61

США

0,25-0,60

-

Фоновое содержание сурьмы в верхнем слое почв СНГ в мг/кг составляет: дерново-подзолистые - 0,76, черноземы - 0,99, торфяные - 0,28.

Сурьма - один из доступных металлов вследствие наличия ее руд и металлов, кроме того, она содержится в виде примесей в рудах многих других металлов, при переработке которых её выделяют в качестве побочного продукта.

В природе наиболее часто встречаются соединения трехвалентной положительно заряженной сурьмы (сульфиды, тиосоли, антимониты, триоксид), затем трехвалентной отрицательно заряженной (антимониды). Соединения пятивалентной сурьмы в природе встречаются очень редко.

Из минералов содержащих сурьму, наиболее распространенным является сурьмяный блеск (стибит, антимонит) Sb2S3. находится он в гидротермальных месторождениях в виде жил сурьмяных руд и пластообразных тел.

1.3 Источники поступления сурьмы в почву в условиях

антропогенного загрязнения окружающей природной среды

Почва - весьма специфический компонент биосферы, поскольку она не только геохимически аккумулирует компоненты загрязнений, но и выступает как природный буфер, контролирующий перенос химических элементов соединений в атмосферу, гидросферу и живое вещество. Микроэлементы, поступающие из различных источников, попадают в конечном итоге на поверхность почвы, и их дальнейшая судьба зависит от ее химических и физических свойств.

В условиях антропогенного загрязнения окружающее природной среды основными источниками поступления сурьмы в почву являются:

- чёрная и цветная металлургия - выработка сплавов, переработка вторцветмета;

- приборостроение - электротехническое производство;

- химическая промышленность - производство лакокрасок.

Среди источников возможного техногенного загрязнения почв сельскохозяйственных угодий и растений в научной и особенно популярной литературе называются минеральные и известковые удобрения. Конкретных экспериментальных и производственных данных о фактическом действии удобрений на загрязнение почвенной среды и растительной продукции совершенно недостаточно. Отсутствуют также систематизированные данные о химическом составе минеральных и известковых удобрений.

Следует отметить, что сурьма, может образовывать летучие соединения, и таким образом возможен воздушный перенос её на большие расстояния от промышленных районов.

1.4 Факторы, оказывающие влияние на поступление химического

элемента из почвы в растение

В настоящее время мало известно о механизмах накопления растениями тяжелых металлов, потому что до сих пор основное внимание уделялось усвоению соединений азота, фосфора и других элементов питания из почвы.

Кроме того, сравнение полевых и модельных исследований показало, что загрязнение почвы и окружающей среды (смачивание листовых пластинок солями тяжелых металлов) в полевых условиях оказывает менее значительное изменение в росте и развитии растений, чем в лабораторных модельных опытах. В некоторых опытах высокое содержание металлов в почве стимулировало рост и развитие растений. Это связано с тем, что более низкая влажность почвы в полевых условиях снижает мобильность металлов, и это не позволяет их токсическому эффекту проявиться в полной мере. С другой стороны, это может быть связано с уменьшением токсичности почвы, обусловленной деятельностью почвенных микроорганизмов в результате снижения их численности при загрязнении почвы металлами. Кроме того, это явление можно объяснить косвенным влиянием тяжелых металлов, например, через воздействие их на некоторые биохимические процессы в почве, в результате чего возможно улучшение питательного режима растений.

Таким образом, действие металлов на растительный организм зависит от природы элемента, содержания его в окружающей среде, характера почвы, формы химического соединения, срока от момента загрязнения. Формирование химического состава растительного организма определяется биохимическими особенностями различных видов организмов, их возрастом и биохимическими закономерностями связи между элементами в организме. Содержание одних и тех же химических элементов в различных частях растений может изменяться в широких пределах.