logo search
ekzamen_ekologia

Экологические пирамиды: численности, биомассы, энергии. Примеры экологических пирамид в наземных и морских экосистемах.

Пирамида численности.

Для построения пирамиды численности подсчитывают число организмов на некоторой территории, группируя их по трофическим уровням:

продуценты – зеленые растения;

первичные консументы – травоядные животные;

вторичные консументы – плотоядные животные;

третичные консументы – плотоядные животные;

n-е консументы («конечные хищники») – плотоядные животные;

редуценты – деструкторы.

Консументы второго, третьего и более высоких порядков могут быть хищниками, питаться падалью или быть паразитами. В последнем случае по величине они меньше своих хозяев, в результате чего пищевые цепи паразитов необычны по ряду параметров. В типичных пищевых цепях хищников плотоядные животные становятся крупнее на каждом трофическом уровне.

Каждый уровень изображается условно в виде прямоугольника, длина или площадь которого соответствуют численному значению количества особей. Расположив эти прямоугольники в соподчиненной последовательности, получают экологическую пирамиду численности, основной принцип построения которой впервые сформулировал американский эколог Ч. Элтон.

Данные для пирамид численности получают достаточно легко путем прямого сбора образцов, однако существуют и некоторые трудности:

продуценты сильно различаются по размерам, хотя один экземпляр злака или водоросли имеет одинаковый статус с одним деревом. Это порой нарушает правильную пирамидальную форму, иногда давая даже перевернутые пирамиды;

диапазон численности различных видов настолько широк, что при графическом изображении затрудняет соблюдение масштаба, однако в таких случаях можно использовать логарифмическую шкалу.

Пирамида биомасс

Экологическую пирамиду биомасс строят аналогично пирамиде численности. Ее основное значение состоит в том, чтобы показать количество живого вещества (биомассу – суммарную массу организмов) на каждом трофическом уровне. Это позволяет избежать неудобств, характерных для пирамид численности. В этом случае размер прямоугольников пропорционален массе живого вещества соответствующего уровня, отнесенной к единице площади или объема.

Термин «пирамида биомасс» возник в связи с тем, что в абсолютном большинстве случаев масса первичных консументов, живущих за счет продуцентов, значительно меньше массы этих продуцентов, а масса вторичных консументов значительно меньше массы первичных консументов. Биомассу деструкторов принято показывать отдельно.

При отборе образцов определяют биомассу на корню или урожай на корню (т. е. в данный момент времени), которая не содержит никакой информации о скорости образования или потребления биомассы.

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Поэтому при дальнейшем анализе могут возникнуть ошибки, если не учитывать следующее:

во-первых, при равенстве скорости потребления биомассы и скорости ее образования урожай на корню не свидетельствует о продуктивности, т. е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой, более высокий, за некоторый период времени;

во-вторых, продуцентам небольших размеров свойственна высокая скорость роста и размножения, уравновешиваемая интенсивным потреблением их в пищу другими организмами и естественной гибелью. Поэтому продуктивность их может быть не меньше чем у крупных продуцентов, хотя на корню биомасса может быть мала.

Одним из следствий описанного являются «перевернутые пирамиды». Зоопланктон биоценозов озер и морей чаще всего обладает большей биомассой, чем его пища – фитопланктон, однако скорость размножения зеленых водорослей настолько велика, что в течение суток они восстанавливают всю съеденную зоопланктоном биомассу. Тем не менее, в определенные периоды года (во время весеннего цветения) наблюдают обычное соотношение их биомасс.

Кажущихся аномалий лишены пирамиды энергий, рассматриваемые далее.

Пирамида энергий

Самым фундаментальным способом отражения связей между организмами разных трофических уровней и функциональной организации биоценозов является пирамида энергий, в которой размер прямоугольников пропорционален энергетическому эквиваленту в единицу времени, т. е. количеству энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за принятый период. К основанию пирамиды энергии можно обоснованно добавить снизу еще один прямоугольник, отражающий поступление энергии Солнца.

Пирамида энергий отражает динамику прохождения массы пищи через пищевую (трофическую) цепь, что принципиально отличает ее от пирамид численности и биомасс, отражающих статику системы (количество организмов в данный момент). На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей. Если учтены все источники энергии, то пирамида всегда будет иметь типичный вид (в виде пирамиды вершиной вверх), согласно второму закону термодинамики.

Пирамиды энергий позволяют не только сравнивать различные биоценозы, но и выявлять относительную значимость популяций в пределах одного сообщества. Они являются наиболее полезными из трех типов экологических пирамид, однако получить данные для их построения труднее всего.

  1. Экологическое значение основных абиотических факторов: тепла, освещённости, влажности, солёности, концентрации биогенных элементов. Сигнальное значение абиотических факторов. Суточная и сезонная цикличность. Лимитирующие факторы.

Экологи́ческие фа́кторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни фототрофных организмов (большинство растений и фотосинтезирующие бактерии), а в жизни гетеротрофных организмов (грибы, животные, значительная часть микроорганизмов) свет не оказывает заметного влияния на жизнедеятельность.

Экологические факторы могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфо-анатомические и физиологические изменения организмов.

Организмы испытывают воздействие не статичных неизменных факторов, а их режимов — последовательности изменений за определённое время.

Абиотические — факторы неживой природы:

Свет не только жизненно важный, но и лимитирующий фактор, как при минимальном уровне, так и при максимальном. Под термином свет подразумевается весь диапазон солнечного излучения, представляющий поток энергии с длинами волн от 0,05 до 3000 нм (1 нанометр = 10-6мм). Количество ее колоссально: ежеминутно Земля получает 2 кал/см2 (1,39×103дж/м2×сек). Эта величина называется солнечной постоянной. Но не вся лучистая энергия достигает земной поверхности.

Главным источником тепла на Земле является солнечное излучение, поэтому свет и тепло выступают сопряжено. Тепло один из наиболее важных факторов, определяющих существование развитие и распространение организмов по Земному шару. При этом важно не только количество тепла, но и распределение его в течение суток, вегетационного сезона, года. Приход тепла к разным участкам планеты, естественно, неодинаков, с удалением от экватора не только снижается поступление его, но и увеличивается амплитуда сезонных и суточных колебаний.

Температурные пределы, в которых может протекать жизнь, составляет всего 300°, от -200°С до +100°С, но для большинства организмов и физиологических процессов этот диапазон еще уже – от 39° в море (-3,3 – +35,6°С) до 125° на суше (-70 – +55°С). Нормальное строение и работа белка осуществляются при 0-+50°С.

Значение температуры заключается в том, что она изменяет скорость протекания физико-химических реакций в клетках, а это отражается на росте, развитии, размножении, поведении и во многом определяет географическое распространение растений и животных. Согласно правилу Вант-Гоффа скорость химических реакций возрастает в 2-3 раза каждый раз при повышении температуры на 10°С, а по достижении оптимальной – начинает снижаться. Верхний (верхний биологический нуль) и нижний пределы называются, соответственно, верхней и нижней летальной температурой. При выходе изменений температуры за пределы выносливости организмов происходит их массовая гибель, т.к. происходит свертывание белка и разрушение ферментов. Так, с переходом через 50-60°С, как правило, створаживается простокваша, сваривается белок яйца, погибает камбий у растений.

Отбор и расселение видов в зонах с разной теплообеспеченностью шел в течение многих тысячелетий в направлении максимального выживания, как в условиях минимальных температур, так и в условиях максимальных. По отношению к температуре все организмы делятся на криофилы (холодолюбивые) и термофилы (теплолюбивые).

Криофилы не выносят высоких температур и могут сохранять активность клеток при -8-10°С (бактерии, грибы, моллюски, членистоногие, черви и др.). Они населяют холодные и умеренные зоны земных полушарий.

ПРИМЕР. В условиях Крайнего Севера, в Якутии деревья и кустарники не вымерзают при - 70°С. «Рекордсмен» – лиственница даурская. За полярным кругом при такой же температуре выживают лишайники, некоторые виды водорослей, ногохвостки, в Антарктиде – пингвины. Семена и споры многих растений, нематоды, коловратки переносят замораживание до температуры близкой к абсолютному нулю (271°С). Животные больших глубин переносят температуры около 0°С.

Термофилы приспособились к условиям высоких температур, обитают преимущественно в тропических районах Земли. Среди них также преобладают беспозвоночные (моллюски, членистоногие, черви и др.), многие из которых живут только в тропиках.

ПРИМЕР. Пресмыкающиеся, некоторые виды жуков, бабочек выдерживают температуру до 45-50°С. В пустыне Палестины максимальная активность у кузнечиков наблюдается при 40-градусной жаре. В горячих источниках Калифорнии при температуре 52°С обитает рыба - пятнистый ципринодон, а на Камчатке при 75-80°С живут сине-зеленые водоросли. Верблюжья колючка, кактусы переносят нагревание воздуха до 70°С.

Многие растения в тропиках не переносят низких температур и погибают при 0°С, хотя ткани их еще не заморожены. Причиной их гибели обычно является нарушение обмена веществ, которое приводит к образованию в растениях чуждых и даже вредных им продуктов, вызывающих отравление.

Вода – основа протоплазмы клеток, тканей, растительных и животных соков. Только при наличии воды в организме протекают процессы фотосинтеза, терморегуляции, обменных процессов. Наиболее высоко содержание воды в периоды активной жизнедеятельности и в молодом возрасте.

Атмосфера. Воздух – источник кислорода для дыхания и углекислого газа для фотосинтеза. Он защищает биосферу от вредных космических излучений и способствует сохранению тепла на Земле. С атмосферой связаны биогеохимические циклы, включающие газообразные компоненты: С, О, N, H2O. Ветер играет важную роль в расселении видов, распространяя семена и споры, способствуя опылению растений.

Рельеф (топографический, или орографический, фактор) – очень важный фактор среды, хотя и косвеннодействующий. Он влияет на перераспределение света, тепла и влаги. В зависимости от высоты н.у.м., экспозиции склонов, расположения их по отношению к морю происходит смена условий местообитания, влияя на размещение растительности и животного населения. С рельефом связана высотная зональнасть

На Дальнем Востоке горный рельеф - один из ведущих природных факторов. Он служит климатическим барьером между приморскими и континентальными районами.

Прочие физические факторы среды: атмосферное электричество, огонь, шум, магнитное поле Земли, ионизирующие излучения. Из перечисленных факторов все большее значение приобретают огонь (лесные пожары), шум (транспортный, строительный, промышленный), радиоактивное излучение. Все они обусловлены увеличением влияния атропогенного фактора.

Активные, пассивные и избегающие адаптации организмов к неблагоприятным факторам среды

При всем мноогобразии форм и механизмов адаптаций живых организмов к воздействию неблагоприятных факторов среды их можно сгруппировать в три основных пути: активный, пассивный и избегание неблагоприятных воздействий. Все эти пути имеют место по отношению к любого экологическому фактору, будь то свет, тепло или влажность.

Активный путь – усиление сопротивляемости, развитие регуляторных способностей, дающих возможность пройти жизненный цикл и дать потомство, несмотря на отклонения условий среды от оптимальных. В большей степени этот путь свойствен гомойтермным организмам, но проявляется и у ряда высших растений (ускорение темпов нарастания-отмирания побегов, корней, быстрое цветение). Механизмы – преимущественно биохимические адаптации.

Пассивный путь – подчинение жизненных функций организма внешним условиям. Заключается в экономном использовании энергетических ресурсов при ухудшении условий жизни, повышении устойчивости клеток и тканей. Проявляется в снижении интенсивности обменных процессов, замедлении скорости роста и развития, летнем сбрасывании листьев, минимизации растений.… Наиболее выражен у растений и пойкилотермных животных, у млекопитающих и птиц – только у гетеротермных видов, обладающих способностью впадать в спячку.

Избегание неблагоприятных условий среды – характерно для всех живых существ. Прохождение жизненных циклов в наиболее благоприятное время года (активные процессы – в вегетационный сезон, зимой – состояние покоя). Для растений – защищенность почек возобновления и молодых тканей снежным покровом, подстилкой; отражение солнечных лучей.

Многие мелкие растения переносят низкие зимние температуры, зимуя под снегом, не имея никаких адаптивных черт в виде изменения органов или клеток. У некоторых из них адаптации проявляются не по отношению к температуре, а по отношению к защитному фактору.

Лимитирующий фактор - фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.

Лимитирующие факторы. При анализе распределения отдельных организмов или целых сообществ экологи нередко обращаются к т. н. лимитирующим факторам. Исчерпывающее описание определенной среды не только невозможно, но и не нужно, поскольку распределение животных и растений (как по географическим зонам, так и по отдельным местообитаниям) может определяться всего одним фактором, например экстремальными (для данных организмов) температурами, слишком низкой (или слишком высокой) соленостью или недостатком пищи. Однако выделить такие лимитирующие факторы бывает нелегко, а попытки установить прямую связь между распределением организмов и каким-либо внешним фактором далеко не всегда удачны. Например, лабораторные опыты показывают, что некоторые животные, обитающие в солоноватых и морских водах, способны выносить изменения солености в широких пределах, а их кажущаяся приуроченность к узкому диапазону значений этого фактора определяется просто наличием в соответствующих местах подходящей пищи.

Сигнальное значение абиотических факторов.

К абиотическим относятся климатические, эдафические, типографические, гидрохимические и гидрофизические факторы. Из климатических факторов основное экологическое значение имеют температура, свет и влажность. Наиболее важным климатическим фактором является температурный. От его напряженности зависит интенсивность обмена веществ организмов и их географическое расположение и распространение. Каждый организм способен жить в пределах определенного интервала температур. Оптимальная температура для большинства наземных животных и растений - от +15 до +30°С. У большинства животных и птиц есть способность к терморегуляции - поддержанию постоянной температуры своего тела. Из климатических факторов большое значение имеет лучистая энергия Солнца. Ультрафиолетовые лучи составляют около 10% всей лучистой энергии. Они невидимы для человека, но воспринимаются органами зрения насекомых и служат им для ориентации на местности в пасмурную погоду. Под их воздействием образуется витамин D. Инфракрасные (тепловые) лучи (45%). Это длинноволновое излучение, поглощаясь тканями животных и растений, вызывают их нагревание. Многие холоднокровные животные используют эти лучи для повышения температуры тела. Основную экологическую значимость имеют: фотопериодизм - закономерная смена светлого и темного времени суток; интенсивность освещения; напряжение радиации; химические действия световой энергии. Значение света - видимой части лучистой энергии, как экологического фактора связано с возможностью фотосинтеза зеленых растений и в конечном счете с созданием органического вещества, растительной биомассы, с суточными ритмами организмов. К эдафическим факторам относится вся совокупность физических и химических свойств почв. К гидрофизическим и гидрофизическим факторам относятся все факторы, связанные с водой. Тела живых организмов в основном состоят из воды. Без воды не могут осуществляться процессы обмена веществ. Все живые организмы, в зависимости от потребности их в воде, а следовательно и по местообитаниям, подразделяются на ряд экологических групп: водные или гидрофильные (постоянно живут в воде), гигрофильные (живут в очень влажных местообитаниях), мезофильные (отличаются умеренными потребностями в воде) и ксерофильные (живут в сухих местообитаниях).