Вплив мінерального добрива на екологію ґрунтів Білоцерківського району

дипломная работа

1. Огляд літератури

1.1 Класифікація мінеральних добрив за впливом на агроекосистему

Мінеральні добрива - це екзогенні хімічні сполуки, за своїм складом поділяють на прості (містять лише один компонент із головних елементів живлення) і комплексні (містять не менше двох головних елементів живлення). Прості мінеральні добрива, залежно від елементу живлення, поділяють на азотні, фосфорні, калійні, магнієві, сірчані тощо, а комплексні - на складні, складно-змішані і змішані. За характером безпосередньої дії на ґрунт і рослини мінеральні добрива класифікують як фізіологічно й біологічно кислі, хімічно й фізіологічно лужні та фізіологічно нейтральні [2].

В основі класифікації мінеральних добрив за ступенем небезпечності лежить структура показників, яка враховує їхній вплив на екотоксикологічний, агрохімічний, гідрохімічний стан агроекосистеми. У межах визначених показників мінеральні добрива поділяють на 4 класи небезпечності (згідно з рекомендаціями ВООЗ щодо поділу хімічних речовин): І - високонебезпечні; II - небезпечні; III - помірно небезпечні; IV - малонебезпечні. Діапазон показників у межах класів небезпечності визначають за існуючими українськими і міжнародними нормативами (додаток 1).

Розроблена класифікація мінеральних добрив дає можливість провести їхню агроекологічну оцінку, визначити можливі негативні впливи і вчасно ввести обмеження на використання у сільськогосподарському виробництві добрив, які не відповідають певним екологічним нормативам.

При вивченні адитивних ефектів, ступінь стійкості агроекосистеми щодо хімічних речовин-забруднювачів оцінюють для конкретної речовини, джерелом якої може виступати мінеральне добриво. За М. Глазовською розрізняють [3]:

педохімічно активні речовини, які створюють кислотно-основні та окисно-відновні умови в ґрунті і впливають таким чином на загальний стан ґрунтової системи (переважно макроелементи та їхні сполуки - NO3--, SO42--, Сl-, Na+);

біохімічно активні речовини, які передусім впливають на живі організми мікрофлору, рослини, тварини (As, Cd, Pb, Cr, Zn, Ni, Cu, Sn, Hg, F - тощо);

речовини, здатні перебувати в ґрунті у таких формах, що призводить до їхньої міграції в поверхневі, ґрунтові та підземні води (NO3-, SO42-, Сl-, F-, Cd, Zn тощо).

За класифікацією В. Патика та Н. Макаренко [4] мінеральні добрива залежно від особливостей впливу на агроекосистему поділяються на (рис.1):

директивної (прямої) дії - негативний вплив на природне середовище спричинений токсичними домішками мінеральних добрив, серед яких найнебезпечнішими є ВМ, галогени, радіонукліди тощо, які і є безпосередніми забруднювачами (до цієї групи насамперед належать фосфорні добрива);

індирективної (непрямої) дії - негативний вплив на природне середовище відбувається внаслідок фізико-хімічних властивостей мінеральних добрив, які в ґрунті проявляють себе як хімічно, фізіологічно, біологічно кислі (лужні) і певним чином впливають на стан ґрунтового комплексу. При цьому змінюється реакція ґрунтового розчину, направленість процесів синтезу та розпаду гумусових сполук, активність біохімічних, мікробіологічних та інших процесів. Тим самим, зазначені добрива змінюють рухомість біогенів та токсикантів і можуть активізувати процеси міграції останніх у системах "добриво-ґрунт-рослина", "добриво-ґрунт-природні води". До таких добрив, передусім, належать азотні, які здебільшого є фізіологічно кислими або лужними.

Рис.1. Поділ мінеральних добрив за особливостями впливу на ґрунтову систему

Наведений поділ певною мірою умовний. Зокрема, фосфорні добрива можуть змінювати реакцію ґрунтового розчину, але цей вплив не такий значний, як азотних добрив. Азотні добрива можуть бути джерелом токсичних елементів, хоча значно меншою мірою, ніж фосфорні. Слід зазначити, що згідно з наведеним групуванням, більшість калійних і комплексних добрив займає проміжне положення

1.2 Вплив мінеральних добрив та їх компонентів на довкілля

1.2.1 Вплив мінеральних добрив на кислотно-основні властивості ґрунту

Нині агрохімічна наука має більш ніж достатньо доказів того, що під дією мінеральних добрив відбуваються зміни кислотно-основних властивостей ґрунтів [5-7].

В основі негативного впливу мінеральних добрив на кислотно-основні властивості ґрунту лежить процес біологічного окислення азоту й утворення кислот (у прикладі з сульфатом амонію - HNO3 і H2SO4). У ґрунті кислоти нейтралізуються, вступаючи у взаємодію з бікарбонатами ґрунтового розчину і катіонами вбирного комплексу [8].

Через деякий час у ґрунтовому вбирному комплексі, крім Н+ зявляється обмінний Аl3+, який токсичний для багатьох рослин. Вже при концентрації у розчині 2 мг/л А1 спостерігають різке погіршення розвитку кореневої системи, порушується вуглецевий, азотний, фосфатний обмін у рослинах. Вищі концентрації алюмінію призводять до різкого зниження врожаю зернових культур і навіть їхньої загибелі.

Нині у науковій літературі нагромаджено великий обсяг даних [9 -11], які свідчать, що підвищення кислотності ґрунтового розчину може істотно впливати на рухомість у ґрунті багатьох хімічних елементів, у тому числі токсичних, тим самим активізуючи перехід їх у рослини та міграцію за профілем ґрунту. У кислих ґрунтах (рН<6,5) рухомість таких елементів як Zn, Mn, Cu, Fe, Co, В та ін. значно збільшується. Вплив мінеральних добрив на геохімічні властивості ґрунтів проявляється не стільки у привнесенні низки елементів-забруднювачів, скільки у зміні особливостей міграції окремих груп ВМ, що зумовлює їхню рухомість. За даними тривалих дослідів Центральної дослідної станції Всеросійського інституту добрив і агрохімії [10], зменшення рН на 1,8-2,0 одиниці призвело до збільшення рухомості Zn у 3,8-5,4 рази, Cd у 4-8, РЬ - у 3-6 і Сu у 2-3 рази. При використанні азотно-калійних добрив величина рН знизилася на 0,1-0,2 одиниці, а коефіцієнт рухомості у ґрунті підвищився: Zn - з 13,4 до 19%, Сu - з 2,6 до 4,7, РЬ - з 5,0 до 7,4, Cd - з 19,6 до 28,3%.

Змінюючи реакцію ґрунтового розчину, мінеральні добрива призводять до підвищення рухомості токсичних елементів і опосередковано діють на процеси переходу їх у рослини: зниження рН водної витяжки з 6,5 до 4,0 підвищує забруднення рослин токсичними елементами з 4 до 20 разів [4].

Найактивніше надходження ВМ із ґрунту в рослини відбувається за кислої реакції ґрунтового розчину, що підтверджується результатами досліджень, проведених у тривалих дослідах з Cd, Pb, Ni, Cr, на різних ґрунтових відмінностях. Вапнування і внесення у ґрунт інших природних сорбентів дає змогу активно впливати на ці процеси. Але підвищення рН з метою зниження вмісту ВМ (зокрема кадмію) у продукції рослинництва ефективне не для всіх видів рослин. Ю. Алексєєвим [12] було встановлено, що вапнування призводило до надходження кадмію у рослини ячменю і бобових культур.

Серед традиційних мінеральних добрив, які можуть активно впливати на кислотно-основні властивості ґрунту, найбільшою активністю характеризуються азотні, серед яких ті, що зміщують рівновагу ґрунтового розчину в бік: підкислення - аміачна селітра NH4NO3, аміак рідкий NH3, аміак водний NH4OH, сульфат амонію (NH4) 2SO4, сульфат амонію-натрію (NH4) 2SO4+Na2SO4, хлористий амоній NH4C1, сечовина (карбамід) CO (NH2) 2; підлуження - натрієва селітра NaNO3 (16% N), кальцієва селітра Ca (NO3) 2-3H2O (17,5% N) [7].

На кислотно-основні властивості ґрунту, хоча і меншою мірою, впливають також калійні і фосфорні добрива. Серед калійних добрив на першому місці калімагнезія K2SO4 MgSO4; на другому - K24 і на третьому - КС1. Калійні добрива, де присутній іон SO42-, спричиняють збільшення розчинності алюмінію, й обмінна кислотність зумовлена саме його вмістом. Фосфорні добрива здебільшого мало впливають на зміну кислотно-основних властивостей ґрунтів - вони здатні спричиняти лише слабке підкислення (суперфосфати), або дещо знижувати кислотність ґрунту (преципітат, мартенівський шлам, знефторений фосфат, фосфоритне борошно) [7].

1.2.2 Біогеохімічний колообіг та забруднення полютантами верхніх шарів ґрунту внаслідок застосування мінеральних добрив

Використання мінеральних добрив може істотно змінювати біогеохімічний колообіг речовин (рис.2), що нерідко призводить до загострення екологічних проблем [4, 11, 13].

Використання мінеральних добрив сприяє включенню біологічно активних елементів (БАЕ) у різні типи міграції, які послідовно змінюються. При видобуванні і виробництві мінеральних добрив БАЕ включаються у техногенну міграцію, при застосуванні - у біогенну. Усі ці типи міграції є складовими єдиного біогеохімічного колообігу хімічних елементів у біосфері. Аналіз надходження БАЕ в агроекосистеми різних ґрунтово-кліматичних зон України свідчить, що найбільша їхня кількість надійшла з мінеральними добривами у зоні Лісостепу протягом 1966-1980 pp., а з 1980 по 1990 pp. - у зоні Степу (рис.3).

Хоча наявність у мінеральних добривах домішок ВМ є фактом встановленим, але інформація щодо забруднення ґрунту цими елементами в результаті застосування мінеральних добрив носить дещо суперечливий характер.

Результати багатьох досліджень [4, 5, 11] засвідчують, що добрива не є істотним джерелом ВМ, і при застосуванні їх не відбувається істотного підвищення вмісту ВМ у ґрунті, але на відміну від інших хімічних сполук, які підлягають процесам деструкції, кількість їх з часом у довкіллі збільшується, біокумуляція ВМ у ланцюгах екосистем дуже висока. На думку Н. Мілащенка [14], людина, що знаходиться на вершині трофічного ланцюга може одержувати продукти з концентрацією токсикантів у 100-10 000 разів вищою, ніж у ґрунті, а період напіввиведення дорівнює сотням років (Cd - 110, Zn - 510, Cu - 1500, Pb - кілька тисяч років). Щороку з мінеральними добривами вноситься 2150 кг кадмію. Крім того, добрива, змінюючи агрохімічні властивості ґрунту, можуть впливати на рухомість ВМ у ґрунті та надходження їх у рослини.

Поступово нагромаджено дані, які свідчать, що при систематичному застосуванні добрив спостерігають тенденції до підвищення валового вмісту ВМ, на фоні чого відбувається істотне збільшення кількості їхніх рухомих сполук у ґрунті. Так, Ю. Потатуєвою зі співробітниками [15] встановлено, що систематичне тривале (60 років) застосування баластних та концентрованих мінеральних добрив на дерново-підзолистому ґрунті призвело до нагромадження рухомих форм Cd, Mn, Мо.

Як правило, внесення азотних добрив призводить до підвищення рухомості Mn, Fe, Zn, Cd у ґрунтах і практично не змінює рухомості Сu і Ni, a рухомість РЬ при цьому знижується. Фосфорні добрива зменшують рухомість ВМ у ґрунті в результаті утворення важкорозчинних фосфатів металів. Калійні добрива менше, ніж азотні і фосфорні впливають на зміну рухомості металів.

Низкою досліджень показано, що внаслідок тривалого застосування мінеральних добрив у ґрунті відбувається інтенсивне нагромадження фтору. Доведено, що з фосфорними добривами у ґрунт надходить 2 - 12 кг/га фтору на рік: при внесенні 60 кг/га Р2О5 у вигляді суперфосфату до ґрунту може надійти 6-8 кг фтору; внесення 40 кг фосфору у вигляді амофосу супроводжується внесенням 7 кг/га фтору; з кожною тонною фосфоритного борошна - 19-37 кг фтору. Слід зазначити, що застосування фосфорних добрив призводить не лише до підвищення загального вмісту фтору у ґрунті, але й до погіршення біологічної активності ґрунту та швидкого нагромадження фтору безпосередньо доступного рослинам, яке, може становити 90%, порівняно з контролем.

У підвищених кількостях хлор негативно впливає на сільськогосподарські рослини. Характер його дії проявляється у зниженні кількості хлорофілу у листі, інтенсивності фотосинтезу, погіршенні водного режиму і транспірації [2]. Хлор має високу здатність до горизонтальної та вертикальної міграції, поряд з цим він може рухатися з висхідними токами води [9]. Негативна дія хлору найбільше проявляється на піщаних ґрунтах, які мають підвищену кислотність. На дерново-підзолистих ґрунтах в орному шарі при внесенні калійних добрив, що містять хлор, вміст цього елемента може зростати на 60-290% залежно від виду культури, умов зволоження та інших факторів [4].

Мінеральні добрива, що містять фосфор, можуть призводити до збільшення у землях сільськогосподарського використання хімічних елементів, які мають природну радіоактивність. Відомо, що у деяких штатах США концентрація урану-238 у ґрунтах за 80 років застосування фосфорних добрив збільшилася удвічі. Подібне явище спостерігали також у Німеччині, де на окультурених ґрунтах вміст природнорадіоактивних елементів (урану і радію) на 6-9% вище, ніж на неокультурених. У ґрунт з простим суперфосфатом надходить значна кількість стабільного стронцію [16].

Серед хімічних елементів І класу небезпечності (Cd, Pb, As, F), що надходять у агроекосистеми з мінеральними добривами, найбільше внесено фтору. Його кількість, що надходить на сільськогосподарські угіддя у цілому по Україні у різні періоди, може коливатися в межах 89-340 тис т. Надходження свинцю дещо менше - 54-560 т, кадмію та мишяку - 7,2-91,5 і 19,2-27,6 т відповідно.

За розмірами надходження в агроекосистеми з мінеральними добривами хімічні елементи 1 класу небезпечності можна розмістити у низхідній послідовності: F> Pb> As> Cd (рис.4).

Визначення загального рівня надходження хімічних речовин у агроекосистеми ще не дає можливості провести обєктиву оцінку небезпечності такого процесу. Для встановлення фактичного рівня небезпечності забруднення хімічними речовинами природних екосистем М. Глазовський [17] запропонував використовувати модуль техногенного геохімічного тиску, що показує кількість речовини, яка у певному регіоні переходить із техногенних потоків у природні. Модуль розраховують за співвідношенням мобілізованої речовини до площі регіону:

Dm= T/S,

де Dm - модуль техногенного геохімічного тиску, г/га-рік; Т - мобілізована речовина, г; S - площа, га.

Розраховані М. Глазовським середньозважені модулі техногенного тиску для низки ХЕ становлять:

F, Pb, Zn, Cu - 100-1000 г/га-рік;

As, Cd, Ni - 10-100 г/ га-рік;

Co - 1-10 г/га-рік.

Виконані за таким принципом розрахунки показали, що рівень техногенного геохімічного тиску Cd, Pb, As і F найвищий для агроекосистем Полісся, Dm Cd для них коливається в межах 0,63-1, 20, DmPb - 4,31-8,29, DmAs - 1,55-3,64, DmF - 2207-6259 г/га-рік. Для областей Лісостепу модуль техногенного геохімічного тиску дещо нижчий. Найменший тиск БАЕ при застосуванні мінеральних добрив спостерігали в агроекосистемах Степу, де DmCd коливався у межах 0,57-0,78; DmPb - 2,53-3,94; DaAs - 1,34-1,89; DmF - 1799-3001 г/га-рік (додаток 2). Така залежність повязана як з рівнем застосування мінеральних добрив та їхнім асортиментом, так і з величиною площі сільськогосподарських угідь деяких областей.

При застосуванні мінеральних добрив у різних природно-кліматичних зонах України величина Dm для більшості елементів - у межах середнього. Винятком, як правило, є фтор, для якого модуль техногенного геохімічного тиску становить 2700 - 2900 г/га-рік, при середньому рівні 100-1000 г/га-рік. Це свідчить про те, що мінеральні добрива є активним антропогенним джерелом фтору в довкіллі. При їх застосуванні відбувається перерозподіл фтору між літосферою і педосферою з явною тенденцією нагромадження у ґрунтах сільськогосподарського використання (рис.5).

У межах окремого поля, яке може виступати як складова частина єдиної агроекосистеми, мінеральні добрива є істотним, але не єдиним джерелом токсичних елементів. У стаціонарному досліді Інституту землеробства УААН на темно-сірому опідзоленому ґрунті було вивчено обсяги надходження БАЕ з традиційними мінеральними добривами: аміачною селітрою, суперфосфатом простим гранульованим і калійною сіллю, а також з органічними добривами і меліорантами.

Участь азотних, фосфорних, калійних, органічних добрив та меліорантів у надходженні As, Cd, Pb, F у ґрунт залежить від системи удобрення. При мінеральній системі удобрення зернових культур (пшениця озима, ячмінь) найістотнішим джерелом БАЕ є фосфорні добрива - кількість елементів, що з ними надходить, становить 44,7 - 92,7% загальної (Рис.6). При органо-мінеральній системі удобрення в ґрунт з органічними добривами надходить близько 86% загальної кількості БАЕ. Співвідношення між надходженням Cd з фосфорними і органічними добривами становить близько 1: 2, Pb і As - 1: 10 (рис.7).

Близько 70% БАЕ надходить в агроекосистеми з фосфорними добривами, з азотними - близько 12, калійними - 6, вапняковими матеріалами - 13%.

Органічні добрива відіграють роль біоконцентраторів і рециркуляторів БАЕ в агроекосистемах, з ними в грунт надходить близько 60% загальної кількості БАЕ [18]. Використання низькоконцентрованих фосфорних добрив може у кілька разів збільшувати надходження БАЕ в агроекосистеми.

Рисунок 6. Мінеральна система удобрення.

Рисунок 7 Органо-мінеральна система удобрення.

1.2.3 Вплив мінеральних добрив на стан природних вод

Використання мінеральних добрив може істотно змінювати біогеохімічний колообіг речовин, що нерідко призводить до загострення екологічних проблем, у тому числі зумовлених станом підземних та поверхневих вод. За даними Й. Гриба, М. Клименка, В. Сондак [19], питома вага поверхневого стоку за лімітуючих джерел забруднення з сільськогосподарських угідь становить 0,25 од., в тому числі токсичних речовин - 0,40, з урбанізованих територій - 0,12 од. У Швеції понад 70% азоту і 50% фосфору надходить у водоймища з сільськогосподарських угідь; у США знайдено високі концентрації азоту (10 мг/л) у річках, що протікають через аграрні райони; У Німеччині 54% азоту надходить у водоймища з сільськогосподарських угідь, 24 - з промисловими скидами і лише 22% - з побутовими стоками. До речовин, що являють загрозу природним водам, належать біогенні елементи і передусім сполуки азоту, а також ВМ, фтор, хлор та ін. [20].

Біогенні та токсичні елементи у природні води можуть надходити внаслідок як горизонтальної, так і вертикальної міграції. Контроль і запобігання цим процесам нині є важливим завданням.

Вертикальна міграція. Вважають, що одним з небезпечних видів забруднення водних джерел є забруднення сполуками азоту. Нітратний азот здатний вимиватися з інфільтраційними водами на значну глибину. Дослідженнями, проведеними на чорноземі опідзоленому при тривалому застосуванні добрив (35 років) було встановлено вимивання нітратів на глибину близько 10 м з максимумом нагромадження на глибині 2-4 м [21].

Вимивання з ґрунту іншого біогенного елемента - калію, залежить від типу ґрунту, водного режиму ґрунту, резервів калію у ґрунті, процесів мобілізації та фіксації калію. Максимальне вимивання калію при внутрішньоґрунтовій міграції на різних типах ґрунтів безпосередньо з калійних добрив становило 21-30 кг/га, а відносна величина - 21 - 25% внесеної дози. Виявлено, що калію вимивається менше, ніж Са2+ і Mg2+ і більше, ніж Na+ і NH4+, а вимивання аніонів, з якими мігрують катіони, підпорядковано такій залежності Сl - > SO42 - > NO3 - > РО43 - [21].

Горизонтальна міграція. Переміщення речовин з водними потоками - найголовніший механізм горизонтального перерозподілу хімічних речовин у агроландшафті. Серед усіх видів горизонтальної міграції найбільшого значення в обміні речовин набули процеси поверхневого водного стоку. Останні 20 років надходження біогенних речовин з поверхневим стоком у водосховища Дніпра збільшилося удвічі [19, 22]. При цьому частка сільгоспугідь у надходженні загального азоту становить 70%, мінерального фосфору - 36%. Внаслідок виносу добрив формується 11% річного стоку хлоридів, 3 - сульфатів, 8 - натрію, калію, 7 - нітратів, 11 - нітритів, 8% - фосфатів. Більшість басейнів малих річок, особливо в зоні Лісостепу і Степу України, продовжують зазнавати доволі великого антропогенного навантаження в результаті сільськогосподарського виробництва.

Поряд з процесами забруднення водоймищ токсичними елементами і сполуками, важливе значення має вплив мінеральних добрив на процеси евтрофікації. Поверхневий стік біогенних елементів мінеральних добрив активізує процеси евтрофікації. Найрозповсюдженішим проявом евтрофікування водоймищ є цвітіння води. Воно властиве всім гіпертрофним водоймам і зумовлено масовим розвитком синьо-зелених ціанобактерій, які продукують токсини. Токсини синьо-зелених ціанобактерій належать до високотоксичних природних сполук, які діють на центральну нервову систему, а також порушують вуглеводневий та білковий обмін [23].

Токсична дія вод евтрофікованого водоймища може бути зумовлена також нагромадженням нітратів і нітритів. У період активної життєдіяльності та після відмирання водорості поповнюють водоймище значною кількістю азотвмісних речовин, у тому числі й біологічно активними амінами. Останні, при взаємодії з нітратами і нітритами утворюють висококанцерогенні нітрозаміни.

1.2.4 Вплив мінеральних добрив на біологічні обєкти

Мінеральні добрива суттєво впливають на гігієнічну якість сільськогосподарських культур.Ю. Алексеєв [12] повідомляє, що застосування мінеральних добрив без урахування вмісту макро - і мікроелементів у ґрунті може призвести до прихованих форм ендемій, у результаті створення екстремальних умов для проявлення дефіциту деяких елементів, необхідних для функціонування організму. Агрохімічною наукою нагромаджено велику кількість даних про прямий звязок між застосуванням азотних добрив і нагромадженням надлишкової кількості нітратів у сільськогосподарських рослинах [2, 4, 25].

В. Ладонін [26] на основі узагальнення результатів дослідів, проведених установами Географічної мережі дослідів Росії, робить висновок, що, в цілому, є достатньо тісний звязок між вмістом рухомих форм ВМ у ґрунтах і нагромадженням їх рослинами.

Узагальнення результатів багатьох наукових досліджень дає змогу виділити основні негативні ефекти, що виникають при застосуванні мінеральних добрив: забруднення верхніх шарів ґрунту потенційно небезпечними ВМ, галогенами, радіонуклідами тощо; зміна кислотно-основних властивостей ґрунту при застосуванні мінеральних добрив; вплив на біологічну активність ґрунту; активізація процесів міграції токсичних і біогенних елементів у горизонтальному та вертикальному напрямах. Зміни, що відбуваються у ґрунті, спричиняють певні порушення у суміжних компонентах агроекосистеми. Через ґрунт мінеральні добрива опосередковано впливають на фізіологічні процеси у рослинах, що стає причиною погіршення їхньої гігієнічної якості. Вони також активізують процеси міграції, що призводить до погіршення якості ґрунтових вод, а також вод наземних водоймищ із впливом на екотоксикологічний стан водних екосистем.

2. Матеріал та методика досліджень

2.1 Місце та умови проведення досліджень

Територія Білоцерківського району знаходиться у лісостеповій зоні правої сторони басейну річки Дніпро, південно-західної частини Київської області. Рельєф регіону відноситься до ерозійно-акумулятивного типу. Північна частина його має слабко хвильовий рельєф із неглибокими річковими долинами. Південна частина району більш рівнинна, що зумовлює схильність до розвитку водної ерозії.

Найбільш поширеними ґрунтами регіону являється чорноземи типові малогумусні (85%), темно-сірі опідзолені (5%), лугові чорноземи (3,5%), супіщані та піщані (2,5%), болотні та інші (3%).

Білоцерківський район Київської області знаходиться в межах помірно - континентального типу клімату, характерною ознакою якого є тепле та вологе літо, а також прохолодна зима з невеликою кількістю снігу (в останні роки). Середня температура січня ?6°, липня +19,5°. Тривалість вегетаційного періоду 198-204 дні. Сума активних температур поступово збільшується з Півночі на Південь від 2480 до 2700°. За рік на території області випадає 500-600 мм опадів, головним чином влітку.

Переважаючі ґрунтові відміни - дерново-підзолисті, опідзолені чорноземи, темно-сірі і світло-сірі лісові ґрунти, глибокі малогумусні чорноземи, в долинах рік - дерново-глеєві, лучні й болотні ґрунти. Зустрічаються лучно-чорноземні, лучні солонцюваті, солончакові і болотні солончакові ґрунти.

З корисних копалин виявлені і розробляються переважно мінеральні будівельні матеріали: граніти, гнейси, каолін, глини, кварцеві піски. Є невеликі поклади торфу. Є джерела мінеральних радонових вод.

Внаслідок густої мережі річок, озер і ставків Білоцерківський район характеризується як багатоводний. По території району протікають: р. Рось - 54.8 км., р. Протока - 23,2 км., р. Красна - 8,9 км., р. Сквирка - 7,8 км., р. Камянка - 20,2 км., р. Узинка - 16,5 км., р. Насташка - 9,3 км., джерела мають протяжність 9,6 км. Притоки річок складають 71 км., ставки займають 175 га., рибкомбінатовські водойми 871 га. На територіі району є 5 водосховищ: Глибочанське - 757,7 га., Середнє - 165 га., Шкарівське - 71 га., Блощинське - 90 га., Матюшанське - 78 га. Глибочанське водосховище служить основним водопостачальником питної води для м. Біла Церква.

2.2 Методика проведення досліджень

Основою для написання підрозділу 3.1 дипломної роботи стали збір, обробка та систематизація матеріалів річних звітів Районної відділу екологічної інспекції м. Біла Церква. Підрозділи 3.2 та 3.3 написані за результатами власних досліджень.

Прогнозування надходження біогенних і токсичних елементів з мінеральних добрив у ґрунт [27, 28]

Прогнозування ризику застосування мінеральних добрив основане на визначенні часу досягнення критичної концентрації у ґрунті елементів, що підлягають контролю.

Проведення розрахунків Тк дає можливість оцінити потенційну небезпеку виду мінерального добрива і, у разі потреби, вжити необхідних заходів для поліпшення його якісного складу або обмежити його використання в умовах нестійких екосистем.

Відношення вмісту токсичних елементів у ґрунті при застосуванні мінерального добрива до їхнього фонового вмісту (контрольний варіант) можна використовувати як показник екологічного стану ґрунтової системи. Відомо, що забрудненим можна вважати такий ґрунт, в якому вміст токсичного елемента перевищує фоновий уміст у 2-3 рази.

Час досягнення критичної концентрації токсикантів у ґрунті (Тк) являє собою відношення можливого додаткового надходження токсичних елементів з добривом (А) до фактичного (G): TK = A/G.

Можливе додаткове внесення токсичних елементів у ґрунт з добривом може бути розраховано як щодо рівня ГДК, так і щодо фонового вмісту ХЕ у ґрунті: А = (ГДК - F) 3 000 000 kt;

А = 2F 3 000 000 kt;

де А - можливе додаткове внесення токсичних елементів у ґрунт з добривом, мг/га; ГДК - граничнo допустима концентрація, мг/кг (додаток 3); F - фоновий вміст токсичного елемента у ґрунті, мг/кг; 3 000 000 - маса орного шару ґрунту в перерахунку на суху речовину, кг/га; kt - коефіцієнт стійкості, що враховує властивості ґрунту і віддзеркалює здатність ґрунту утримувати ХЕ у фіксованому стані у балах.

Коефіцієнти стійкості (kt), розраховані для різних типів ґрунтів, наведено у додатку 4.

Фактичне надходження токсичних елементів у ґрунт з добривом (G) розраховується як: G=dg2100/g1,де d - доза добрива за діючою речовиною, кг/га; g1 - вміст діючої речовини у добриві,%; g2 - вміст токсичного елемента у добриві, мг/кг (дод.5)

За терміном досягнення критичної концентрації БАЕ у ґрунті запропоновано таку градацію ризику застосування мінеральних добрив: < 10 років - високонебезпечний; 10-30 - небезпечний; 31-100 - помірно небезпечний і > 100 років - малонебезпечний рівень.

Прогнозування надходження біогенних і токсичних елементів з мінеральних добрив у водні обєкти [29]

Для розробки експертної оцінки надходження біогенних і токсичних елементів у водні обєкти внаслідок застосування мінеральних добрив можна керуватися визначенням виносу хімічних речовин з рідким стоком (Р) за формулою: Р= Сст·W·F/1000,де Сст - концентрація хімічних елементів у стоці, мг/л (розраховують для кожного елементу окремо); W - обєм стоку, м3/га; F - площа, для якої роблять розрахунок, га (рекомендовано брати площу 20 га, що відповідає 1 га водної поверхні водоймища).

Орієнтовний обєм стоку для території України, визначений за картосхемами ізоліній поверхневого стоку талої води, становить близько 50 м3/га.

Концентрація ХЕ у стоці (Сст) передбачає врахування фактичної кількості ХЕ, які надходять у ґрунт з мінеральним добривом, а також можливість переходу їх у поверхневий стік і розраховують за формулою:

Сст= G · b, мг/л

де G - фактична кількість ХЕ, які надходять з добривом у ґрунт, кг/га;

b - параметр переходу ХЕ з добрива у стік, мг·га/л·кг.

Використовуючи відомий ряд водної міграції ХЕ, запропонований О. Перельманом, а також спряженість хімічних властивостей біогенних і токсичних елементів, встановлено величини b для ХЕ, джерелом яких можуть виступати мінеральні добрива: N, F, СІ, Zn, Cd - 0,010 мг·га/л·кг; Р, As - 0,0013 мг·га/л·кг; К, Cu, Ni, Co, Pb, Cs - 0,003 мг·га/л·кг

Розрахунок не передбачає врахування вмісту рухомих форм поживних речовин в орному шарі ґрунту, зміни концентрації хімічного елемента у стоці при зміні його вмісту у ґрунті, а також коефіцієнтів, що характеризують вплив агротехнічного фону на процеси латеральної міграції ХЕ.

При надходженні з одиниці сільськогосподарських угідь на одиницю водної поверхні при рівномірному розподілі ХЕ у верхньому шарі води (0,3 м) концентрація його становитиме:

С=Р/1000h, мг/л,

де h - глибина забрудненого шару.

Порівняння розрахункової концентрації з ЛД50, ЛК50 та іншими показниками небезпечності для водних організмів, а також з нормативами якості води (додаток 6) дає змогу оцінити безпечність (ризик) застосування добрива за певним елементом.

3. Результати досліджень

3.1 Стан ґрунтів та водних обєктів по білоцерківському району

Землі, ґрунти відіграють багатогранну роль у розвитку і функціонуванні біосфери, забезпечують біологічний кругообіг речовин у природі, є головним середовищем виробництва у сільському господарстві, просторовим базисом розміщення і розвитку всіх галузей господарства.

У звязку з особливостями географічного положення територія Київської області характеризується різноманітним ґрунтовим покривом, який представлено поліським і лісостеповим типами.

Висока щільність та особливості, які склалися в розвитку промисловості і сільського господарства, обумовили високий рівень освоєності земельного фонду.

Високий рівень розвитку виробничих сил і сприятливі для ведення сільськогосподарського виробництва грунтово-кліматичні умови, особливо у лісостеповій зоні області, обумовили інтенсивне використання земель.

За даними відділу екологічного контролю (м. Біла Церква) земельні ресурси сільськогосподарського призначення по району становлять 99,6 тис. га (табл.1).

Динаміка обсягів ріллі за 1991 - 2004 роки свідчить про зменшення їх площ з 82,2 тис. га до 74,1 тис. га та скорочення площ під багаторічними насадженнями майже вдвічі.

Станом на 2006 рік відсоток сільгоспугідь у складі сільгосппідприємств Білоцерківського району підвищився (на 12,66%) внаслідок збільшення площ ріллі на 17,594 тис. га.

Розорюваність земель по району становить 94,5%. Майже в двічі зросли площі під багаторічними насадженнями та під сіножатями і пасовищами.

Таблиця 1. Наявність земель сільськогосподарського призначення в сільгосппідприємствах Білоцерківського району (тис/га).

Рік

С/г угіддя

Рілля

Багаторічні

насадження

Перелоги

Сіножаті

Пасовища

1991

87,822

82,222

0,795

-

1,910

1,677

1992

88,107

81,275

0,565

-

2,155

1,677

1993

86,072

81,825

0,579

-

2,084

1,684

1994

85,555

81, 201

0,581

-

2,107

1,669

1995

85,991

81,416

0,532

-

2,109

1,934

1996

85,942

82,134

0,504

-

2,148

2,151

1997

85,760

80,956

0,504

-

2,150

2,149

1998

85,328

80,681

0,314

-

2,098

2,045

1999

84,412

80,027

0,314

-

2,079

1,866

2000

82,901

78,606

0,314

-

2,087

1,894

2001

82,901

78,606

0,314

-

2,087

1,894

2002

82,901

78,606

0,314

-

2,087

1,894

2003-2004

86,94

74,106

0,403

-

2,083

1,883

2005 - 2006

99,6

91,7

0,738

0,551

7,67

Інформація про застосування засобів хімізації по Білоцерківському району представлена у табл.2 та рис.8-11).

Таблиця 2. Динаміка удобрених площ с. - г. угідь, 2004-2006рр.

Рік

Загальна посівна

площа під урожай

поточного року, га

Удобрена мінер.

добривами

(фізична),

га

% до заг.

площі

Удобрена орг.

добривами

га

% до

загальної

площі

2004

72653

28343

39

5277

7,3

2005

69685

26435

38

6266

9,0

2006

65568

33496

51

5102

7,8

Середнє за 3 роки

69302

29425

43

5548

8,0

З наведених даних можна побачити, що за останні три роки кількість площ, де внесені мінеральні добрива зросла на 12%.

За період 1991-2006 рр. внесення мінеральних добрив зменшилось на 166,5 кг/га, або у 4,7разів. Отже, в залежності від питомих кількостей внесених добрив Білоцерківський район відноситься до районів з низькою інтенсивністю внесення. За останні три роки найвищі обсяги внесення мінеральних добрив відмічено у 2004 році. Найбільше вноситься азотних добрив - в середньому за три роки 21333 кг д. р., калійних було внесено 8263 кг д. р. та фосфорних - 6997 кг Р2О5.

"right">63

Рис 8. Динаміка внесення мінеральних добрив по Білоцерківському району,1991-2006рр. кг/га

За період 1991-2006 рр. внесення органічних добрив скоротилося до 3,3 т/га у 2006 році, тобто у 3,5 рази. За останні три роки в середньому вносили щорічно 234780 т органіки.

На основі аналізу обємів внесення пестицидів на ґрунти в минулі роки Білоцерківський район можна віднести до зон високого навантаження (3,6 -3,8 кг/га у 1991 -1992 роках). За останні пять років (2002 -2006 роки) внесення отрутохімікатів скоротилося до 0,50 кг/га, тобто у 7,0 разів. Поясненням цьому є дві причини: незадовільний фінансовий стан господарств та застосування препаратів останнього покоління, які використовуються у дуже малих кількостях (грамах діючої речовини на гектар).

Рис.9. Динаміка внесення мінеральних добрив по видам по Білоцерківському району, 2004-2006рр., кг

Рис.10 Динаміка внесення органічних добрив по Білоцерківському району, 1991-2006 рр., т/га

Рис.11 Динаміка внесення пестицидів по Білоцерківському району, кг/га

Реальну загрозу для навколишнього природного середовища являє стан зберігання добрив та отрутохімікатів у Білоцерківському районі (табл.3). Станом на 2005-2006 роки у районі не існує складських приміщень для зберігання добрив, відсутні також гноєсховища.

Таблиця 3. Стан складських приміщень для хімічних меліорантів у Білоцерківському районі

п/п

Назва

Один. виміру

Роки

2000-2003

2004

2005

2006

1

Господарських складів з 2-х кратним обігом

шт. /тис. т

30/14,0

29/14,0

немає

немає

сільгоспхімії

шт. /тис. т

1/4

1/4

немає

немає

2

Отрутохімікатів

шт. /тис. т

29/615

29/85

32

32

в т. ч. паспортизовано

шт. /тис. т

23/477

18

32

32

3

Гноєсховища

шт. /тис. т

23/92,0

23

немає

немає

Агрохімікати та пестициди часто зберігаються у неналежних умовах (фото 1 - 4), з порушеннями техніки безпеки, що призводить до забруднення ґрунту на полях та підземних вод, які є основним джерелом поповнення р. Рось та її притоків.

Фото 1-4. Зберігання мінеральних добрив

Безумовно, зменшення обсягів агрохімікатів та пестицидів сприятливо позначається на екологічній ситуації у районі. Але, в той же час, спостерігається зменшення родючості ґрунтів. Так, уміст гумусу скоротився з 3,9% у 1963 році до 2,9% - у 2006 році. Негативно позначилася на родючості ґрунтів відсутність агрохіммеліоративних заходів, за період 1991 - 2004 років вапнування ґрунтів проводилося лише на площі 180 га у 1999 році, в той час, як відомо, застосування мінеральних добрив у попередні роки зумовило значне підвищення кислотності ґрунтів. За останні два роки (2005 - 2006) проведено вапнування на ґрунтах загальною площею 481 га, на 39,5 га проводилися культурнотехнічні заходи.

В 2006 році мережею гідрометслужби на базі р. Рось проводились спостереження за станом забруднення водних обєктів Білоцерківського району за основними гідрохімічними показниками (табл.4).

За даними спостережень Центральної геофізичної обсерваторії вміст розчиненого кисню у воді був достатнім і знаходився в межах 8-11 мгО2 /дм3.

Таблиця 4. Середньорічні концентрації забруднюючих речовин (мг/дм3) у воді річок Білоцерківського району за 2005-2006 рр.

Найменування забруднюючих речовин

Місце спостереження за якістю води

Завислі речовини

БСК5

Мінералізація

Суль-фати

Хлориди

Азот амоній-ний

Нітрати

Нафтопродукти

Інші речовини, які про-нормовані

ГДК речовин:

комунально-побутові

рибогосподарські

3

3

1000

1000

500

100

350

300

2

0,5

45

40

0,3

0,05

р. Рось,

500 м. вище скиду о/с

КОВПКВГ,

“Київоблводоканал"

с. Томилівка

5,45

3,78

345,0

26,06

30,4

1,07

3,7

р. Рось,

500 м. нижче скиду о/с

КОВПКВГ,

“Кіївоблводоканал"

с. Томилівка

6,3

4,39

378,0

25,11

33,02

1,23

5,85

р. Протока,

500 м вище скиду Білоцерковського рибгоспу

13,0

4,85

42,46

45,2

1,49

19,17

р. Протока,

500 м нижче скиду Білоцерковського рибгоспу

12,2

4,82

30,71

39,78

1,46

5,78

р. Покровка,

водозабір КП “Білоцерківхлібо-продукт"

м. Біла Церква

11,0

5,4

15,68

19,98

1,96

1,12

р. Покровка,

500 м нижче скиду КП “Білоцерківхлібо-продукт"

м. Біла Церква

10,2

5,4

14,84

19,89

1,95

1,04

д/п “Олександрія”, м. Біла Церква, джерело

128,96

62,99

д/п “Олександрія”, м. Біла Церква, став№1

40,27

д/п “Олександрія", м. Біла Церква, став№2

22,6

48,74

д/п “Олександрія”, м. Біла Церква, став№3

13,23

49,04

р. Рось, кс-1

4,1

3,57

317

16,33

20,24

0,49

1,18

р. Рось, кс-2

5,4

4,12

325

24,85

23,9

0,18

1,26

Водні обєкти Київської області та, зокрема, Білоцерківського району були забруднені переважно сполуками азоту та сполуками важких металів, середньорічні концентрації яких становили:

фенолів - на рівні ГДК; сполук міді - 1-3 ГДК; сполук заліза загального - 1-4 ГДК, марганцю - 1-5, цинку - 1-3 ГДК, сполук хрому шестивалентного - 5-13 ГДК на всіх річках і водосховищах району.

Порівняно з 2004 роком, стверджують спеціалісти Центральної геофізичної обсерваторії, збільшились концентрації сполук заліза загального в річках Білоцерківського району та Київської області.

Центральною геофізичною обсерваторією проводились також гідробіологічні спостереження на р. Рось.

За вимогами екологічної класифікації якості поверхневих вод суші води р. Рось в районі м. Біла Церква відповідали вимогам 2 класу, 3 категорії якості вод. Слід відмітити, що в створі 9 км вище міста (водозабір) стан планктонних угруповань був найкращим, висока чисельність, видове і таксономічне різноманіття. Значення індексу сапробності (ІС) на цій ділянці були найнижчими (по фітопланктону 1,96, по зоопланктону 1,53). Одержані величини біорізноманітності по фіто- та зоопланктону (за індексом Шеннона) вказували на високу сталість екосистеми річки на ділянці м. Біла Церква. Трофність вод в літній період змінювалась від евполітрофні до політрофні на ділянці 9 км вище міста, до гіпертрофні в створі 3 км нижче міста.

За значеннями показників води у відібраних пробах відповідають нормативам СанПіН 4630 для водойм питного призначення. Але мали місце перевищення в питному водозаборі на м. Біла Церква по ХСК у 1,5 рази, по БСК у 1,3 рази.

Дані щодо хіміко-аналітичного контролю якості водних ресурсів проведених Держуправлінням в 2006 році свідчать про тенденцію зростання забрудненості поверхневих водойм біогенними елементами. Причиною цього є високий рівень зношеності основних фондів, незадовільний стан частини водопровідно-каналізаційних мереж, незадовільна, неритмічна робота очисних споруд.

Проводився контроль поверхневих водойм дендропарку “Олександрія” м. Біла Церква в звязку з забрудненням Cr (VI) та азотними сполуками, зокрема NH4+. Порівняно з 1994 р, коли зявилось забруднення Cr (VI), його концентрація різко зменшується, але спостерігається міграція Cr (VI): однозначно зменшується вміст Cr (VI) у джерелі, але порівняно з 2004 роком дещо збільшився у ІІ і ІІІ ставках. Продовжується спостерігатись висока концентрація нітратів, нітритів, амонію у джерелі та 1, 2, 3 ставках парку.

3.2 Агроекологічна характеристика основних традиційних видів мінеральних добрив

З агроекологічної точки зору, важливими для оцінки можливої негативної дії мінеральних добрив на довкілля є: кількісний та якісний склад мінеральних добрив, у тому числі домішок; особливості впливу на ґрунтовий комплекс і, в тому числі на кислотно-основні властивості ґрунтового розчину; процеси вилуговування та міграції біогенних елементів та токсикантів; активність мікробіологічних та біохімічних процесів у ґрунті; вплив на якість сільськогосподарської продукції [4].

3.2.1 Азотні добрива

Сировиною для виробництва більшості азотних добрив є аміак і азотна кислота, які синтезують з атмосферного повітря або утилізують з газів, що є відходами різних промислових виробництв. Азотні добрива в багатьох випадках підкислюють або підлужують ґрунтовий розчин, що є результатом їхньої фізіологічної кислотності або лужності.

Нітратний азот не піддається фізико-хімічному та фізичному поглинанню у ґрунтах, зберігає високу активність і за певних умов може вимиватися у ґрунтові води.

Максимально допустимі річні норми азоту мінеральних добрив у різних зонах України: Полісся і Лісостеп - 140, Степ - 180 кг/га поживних речовин (за винятком культурних пасовищ) [30].

Азотні добрива в якості домішок можуть містити певну кількість мікроелементів [4]: As - 2,2-120 мг/кг; Вг - 185-716; Cd - 0,05-8,5; Co - 5,4-12; Сг - 3,2-19; Cu - <1-15; Hg - 0,3-2,9; Mo - 1-7; Ni - 7-34; Pb - 2-27; Sn - 1,4-16; Zn - 1-42 мг/кг. Вітчизняна аміачна селітра містить: Zn - 0,2 мг/кг, Cu - 0,25, Ni - 0,84, Pb - 0,05 мг/кг (додаток ). Деякі з цих елементів у невеликих кількостях можуть позитивно впливати на ріст і розвиток рослин, але систематичне внесення добрив може призвести до нагромадження у ґрунті баластних елементів, погіршення гігієнічної якості продукції, міграції токсикантів.

Загальна характеристика токсичної дії азотних добрив полягає у негативному впливі, повязаному, насамперед, з наявністю нітратного азоту.

Підпорогова концентрація нітратів у воді, що визначають за органолептичним показником - 400 мг/л, підпорогова концентрація NH4NO3, яка не впливає на санітарний режим водоймища - 10 мг/л, максимальна концентрація NH4NO3, яка при постійному впливі не призводить до порушень біохімічних процесів - 2 мг/л [25].

Допустима добова доза нітратів для людини, згідно з рекомендаціями ФАО/ВООЗ - 5мг/кг; летальна - 8-15 г Зафіксовано велику кількість випадків гострого отруєння їжею з високим вмістом нітратів [31].

За результатами наших досліджень (табл. .5) при застосуванні 100 кг фізичної маси аміачної селітри у ґрунт надійде 84 мг/га нікелю, 20-25 мг/га кадмію, цинку та купруму. Дана кількість домішок безпечна для екологічного стану ґрунту (Тк >100), але при внесенні доз добрив, розрахованих під запланований урожай (тобто більших за 35 кг/га д. р) зросте концентрація важких металів, що є потенційно небезпечним.

Щодо забруднення поверхневих вод найбільшу небезпеку представляють домішки кадмію (3 клас якості води).

Сульфат амонію містить більшу кількість домішок, ніж аміачна селітра у 2,5-10,0 разів. Внесення такої ж кількості сульфату амонію (100 кг за фізичною масою) зумовлює забруднення водних обєктів кадмієм та свинцем (3 клас якості води).

Таблиця 5. Зведені показники агроекологічної оцінки застосування азотних добрив щодо їх впливу на ґрунт та водні обєкти

Елемент

G мг/га

А мг/га

Тк

Сст мг/л

Р мг/л

С мкг/л

Аміачна селітра

Zn

20

10080000

>100

0,2

0,2

0,66

Cu

25

88800000

>100

0,075

0,075

0,25

Ni

84

4080000

>100

0,25

0,25

0,83

Pb

5

8520000

>100

0,015

0,015

0,05

Cd

20

1590000

>100

0,2

0,2

0,66

Сульфат амонію

Zn

220

10080000

>100

2,2

2,2

7,3

Cu

60

88800000

>100

0,18

0,18

0,6

Ni

1000

4080000

>100

3

3

10,0

Pb

1250

8520000

>100

3,75

3,75

12,5

Cd

10

1590000

>100

0,1

0,1

0,3

3.2.2 Фосфорні добрива

Фосфорні добрива посідають перше місце серед мінеральних за вмістом токсичних домішок, що повязано з геологічним походженням та хімічною будовою фосфорних руд [32]. Основними компонентами фосфорних руд, що йдуть на виробництво добрив, є фосфорити (осадового походження) і апатити (вивержені мінерали).

Залежно від геологічного походження та географічного положення, фосфорні руди мають різну кількість домішок важких металів (ВМ) та токсичних елементів (додаток 7).

Делись добром ;)